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a b s t r a c t 

Time-preference shocks affect agents’ preferences for assets with different durations. We 

consider longevity risk as a source of time-preference shocks and model it in the recur- 

sive preferences setting. This implies a consumption-based three-factor model, including 

longevity risk, consumption growth rate, and the market portfolio, where longevity has a 

negative price of risk. Empirically, this model explains many well-known cross-sectional 

portfolios. Notably, we find that longevity risk and the momentum factor share a com- 

mon business cycle component, i.e., short-run consumption risks. Prior winners (losers) 

provide hedging against mortality (longevity) risk and thus have higher (lower) expected 

returns, because winners have higher dividend growth and shorter equity durations than 

losers. Time-varying longevity risk captures most momentum profits over time, including 

the large momentum crashes observed in the data. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Time-preference discount rate affects agents’ intertem-

poral choice (see, e.g., Frederick et al., 2002 , for a re-

view) and their demand for assets with different durations.
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Therefore, shocks to agents’ time-preference discount rates

move asset prices ( Campbell, 1986; Albuquerque et al.,

2016 ). In this paper, we explore the cross-sectional as-

set pricing implications of time-preference shocks aris-

ing from longevity risk in the stock markets. Longevity

risk is a natural source of time-preference shocks. Intu-

itively, we expect agents to become impatient when fac-

ing a negative longevity shock and vice versa ( Becker and

Mulligan, 1997 ). From the duration matching perspective,

agents invest more in stocks with longer durations when

there is an unexpected increase in longevity to minimize

the rollover risk in the future, because longevity risk gen-

erates greater uncertainty about future consumption. In

particular, for momentum portfolios, we find that past

losers have lower dividend growth and longer equity du-

rations than past winners. Therefore, agents invest more

in past losers (winners) for an unexpected increase (de-

crease) in longevity. Because stocks with longer durations

have lower expected returns (see, e.g., Dechow et al., 2004;
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Lettau and Wachter, 2007; Da, 2009; Binsbergen and Koi- 

jen, 2017; Weber, 2018 ), overall, previous losers underper- 

form. We show that longevity risk captures most momen- 

tum profits observed in the US and UK markets, and the 

pricing power of longevity risk comes from the short-run 

risk component, i.e., a business cycle component. 

Longevity risk represents unexpected shocks to life ex- 

pectancy. 1 Overall, people lived longer than expected in 

the last century, largely due to economic development and 

improved healthcare. However, changes in life expectancy 

are quite volatile. There are negative shocks resulting from 

economic recessions, epidemics, natural disasters, wars, 

or social and political disturbances. For example, in the 

US, life expectancy increased from 74.31 years in 1963 to 

81.69 years in 2014, with an annual average increase of 

0.14 years and an annual standard deviation of 0.15 years. 

This is significant, as it implies that longevity increases by 

3.36 hours per day. Take the year of 2014 as an example. 

The average age in the US is 38.58 years, and if we do 

not consider further longevity improvement the expected 

remaining lifespan is 42.11 years. However, if we consider 

the effect of longevity increase, there could be 48 remain- 

ing years, which is much longer than the 42.11 years ex- 

pected in 2014. Such changes in investment horizon affect 

agents’ intertemporal consumption and investment deci- 

sions, which in turn affect asset prices. 

Longevity risk can be interpreted as shocks to time 

preferences, and it affects the pricing kernel via two chan- 

nels. First, longevity increases with the time-preference 

discount rate. This is a direct channel. For example, a 

positive longevity shock induces agents to plan for a 

longer horizon and to place more weight on future util- 

ities because future consumption becomes more likely, 

which means that agents become more patient. As a re- 

sult, agents consume less today and save more in long- 

term risky assets, which implies lower expected returns. 

Second, time-preference shocks affect the cross-sectional 

income inequality, while longevity risk may capture in- 

come inequality and hence reveal time-preference shocks. 

This is an indirect channel. 2 For example, Krusell and 

Smith (1998) ; Suen (2014) , and Hubmer et al. (2016) show 

that stochastic time-preference rates across individuals af- 

fect cross-sectional inequality. Chetty et al. (2016) find 

that higher inequality is associated with higher mortal- 

ity, because unequal societies could hurt the health and 

longevity of individuals due to economic and social rea- 

sons ( Pickett and Wilkinson, 2009 ). Since countercyclical 

income inequality is positively priced ( Constantinides and 

Duffie, 1996; Johnson, 2012 ), longevity risk is negatively 

priced. 

Following Albuquerque et al. (2016) , we model 

longevity risk via a stochastic time-preference shock 
1 The economic consequences of longevity risk have been widely 

noted from the insurance, health, and economic growth perspectives 

(e.g., Murphy and Topel, 2006; Hall and Jones, 2007 ). For example, IMF 

(2012) estimates that each additional year of life expectancy adds 3% − 4% 

to the present value of the liabilities of a typical defined benefit pension, 

and a three-year increase of life expectancy would cost 50% of 2010 GDP 

in developed economies. 
2 We thank Robert Dittmar (the referee) for suggesting this channel. 
process in the recursive preferences setting. This implies 

a consumption-based three-factor model, which includes 

longevity risk (time-preference shocks), consumption 

growth rate, and the market portfolio. 3 This can be re- 

duced to a two-factor model, including only the longevity 

factor and consumption factor, if we consider a power 

utility specification. Empirically, we adopt two different 

measures of longevity risk. Our first measure is a model- 

free one, which is computed as the innovations of the 

weighted average period life expectancy. Our second mea- 

sure is based on the mortality risk. We use the Poisson 

Lee-Carter (PLC) model ( Brouhns et al., 2002 ) to estimate 

a mortality index. We measure mortality risk as the inno- 

vations in the mortality index. Hence, a positive mortality 

shock means a negative shock to longevity. These two 

measures are highly correlated, with a correlation coeffi- 

cient of –0.99. 4 We find that longevity risk is significantly 

priced in the cross section of various test assets, especially 

for the momentum portfolios. Fig. 1 depicts the annual 

longevity risk (see the measurement details in Section 3 ) 

and the momentum factor over 1963–2014 in the US mar- 

kets. Longevity risk closely tracks the momentum factor, 

with a correlation coefficient of –0.26. Momentum profits 

are low when longevity risk is high, which is strikingly 

evident in the momentum crash in 2009. This suggests 

that longevity risk is an important source of momentum 

profits. 

We proceed to test the pricing power of the longevity 

factor in two ways. First, we apply the two-step general- 

ized method of moments (GMM) to directly estimate the 

consumption-based models. Our test assets include six size 

and book-to-market sorted portfolios, six size and invest- 

ment sorted portfolios, six size and operating profitability 

sorted portfolios, and six size and momentum sorted port- 

folios. We find that longevity risk is significantly priced. A 

one-year increase in longevity corresponds to a decrease of 

5.17% in asset returns. The consumption-based three-factor 

model prices the test assets well, with a small root-mean- 

square error of about 1% per year. 

Second, we employ the standard time-series and cross- 

sectional asset pricing tests. We construct a mimicking 

consumption portfolio and a mimicking longevity port- 

folio to test the consumption-based models. The Fama–

MacBeth regressions of 25 size and momentum sorted 

portfolios show that longevity risk has a negative price 

of –0.83% per month ( t -statistic = –6.50). The time-series 

regressions show that prior winners have negative load- 

ings on longevity risk, while prior losers have a positive 

exposure. As longevity risk is negatively priced, this ex- 

plains the return differences between prior winners and 

losers. The consumption-based three-factor model and its 

two variations, i.e., the two-factor model and the Fama–

French three-factor model augmented with the longevity 
3 One might suggest that longevity risk can be transferred through an- 

nuities, medical insurance, or public plans for individuals. However, some 

nondiversifiable longevity risk remains at the aggregate level. Moreover, 

uninsurable labor income shocks could affect longevity and make it unin- 

surable as well. 
4 Slightly abusing the notation, we refer to both measures as longevity 

risk but clearly indicate the exact measure when necessary. 
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Fig. 1. Annual momentum factor and longevity risk. This figure plots the annual momentum factor ( MOM ) and innovations in the weighted average period 

life expectancy ( dE ), i.e., the longevity risk, over 1963–2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

factor, perform well for various test assets. We perform ex-

tensive robustness checks and find that the results are ro-

bust to different sample periods, alternative test assets, dif-

ferent data frequencies, different longevity measures, and

both US and UK markets. 

Our paper speaks directly to the momentum litera-

ture, started by Jegadeesh and Titman (1993) . Momentum

strategies have been confirmed in various markets and as-

set classes. 5 Empirically, momentum seems related to liq-

uidity risk ( Pástor and Stambaugh, 2003 ), consumption risk

( Bansal et al., 2005 ), credit ratings ( Avramov et al., 2007 ),

macroeconomic risks like market state and industrial pro-

duction growth ( Chordia and Shivakumar, 2002; Cooper

and Hameed, 2004; Liu and Zhang, 2008 ), stock perfor-

mances 12 to 7 months before portfolio formation ( Novy-

Marx, 2012; Goyal and Wahal, 2015 ), ranking period return

difference between past winners and losers ( Huang, 2015 ),

and earnings momentum ( Chordia and Shivakumar, 2006;

Novy-Marx, 2015 ). Behavioral models like Barberis et al.

(1998) ; Daniel et al. (1998) , and Hong and Stein (1999) at-

tribute momentum profits to underreaction or delayed

overreaction to information. Many risk-based explanations

have also been proposed, either theoretically or empiri-

cally. Johnson (2002) and Sagi and Seasholes (2007) ar-

gue that past winners are inherently riskier. Vayanos and

Woolley (2013) propose fund flows as a driver of momen-

tum and reversal. Liu and Zhang (2014) and Hou et al.

(2015) show that an investment-based model can partially

capture the momentum profits. Unfortunately, the exist-

ing behavioral and rational explanations of momentum are

far from conclusive. For example, momentum strategies are

highly volatile and experience infrequent but severe losses

in panic states ( Daniel and Moskowitz, 2016 ), 6 which chal-

lenges existing rational and behavioral explanations. 
5 See Footnote 1 of Daniel and Moskowitz (2016) for references therein. 
6 Some strategies have been proposed to manage the risks of momen- 

tum investment ( Barroso and Santa-Clara, 2015; Gulen and Petkova, 2015 ). 

 

 

 

 

 

We are keen to understand the possible aggregate risks

behind momentum profits. To this end, this paper taps the

literature on demographic changes and time-preference

shocks. Specifically, we examine the cross-sectional asset

pricing implications of time-preference shocks introduced

by longevity risk. We dig deeply to understand the eco-

nomic links between momentum profits and longevity risk,

which we summarize below. First, we show that prior win-

ners (losers) provide hedging against mortality (longevity)

risk, because winners experience higher dividend growth

and thus have much shorter equity durations than losers.

From the duration matching perspective, when facing a

negative shock in longevity (i.e., a positive shock in mor-

tality), agents invest more in assets with shorter durations,

e.g., the winners portfolio, to minimize the rollover risks

in the future. Thus, winners (losers) have negative (posi-

tive) exposure to longevity risk. Since longevity risk is neg-

atively priced, winners (losers) have higher (lower) future

returns. Second, as longevity risk varies over time, agents’

preferences for longer or shorter duration stocks change

over time, which leads to time-varying momentum profits.

For example, momentum profits are low when longevity

risk is high. Let us inspect the largest momentum crash,

which is in 2009. Innovation in life expectancy is only 0.05

years in 2008 (the financial crisis year) but 0.33 years in

2009, coinciding with the huge loss of momentum strategy

in 2009. In fact, as shown in Fig. 1 , longevity risk closely

follows the three largest momentum crashes over the sam-

ple period, e.g., in 1975, 2003, and 2009, because longevity

risk is unusually high in these three years. The ability of

longevity risk to capture the momentum crashes is no-

table and distinguishes it from most existing explanations

of momentum profits. Third, the frequency domain analy-

sis directly shows that longevity risk and the momentum

factor share a common business cycle component with a

period of 2.74 years, which is missing in the Fama–French

three factors. This is consistent with the findings that

momentum relates to business cycles ( Chordia and Shiv-

akumar, 20 02; Cooper and Hameed, 20 04 ). Following the
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7 β0 is normalized as 1 and the one-period time-preference rate is βt+1 . 
long-run risk literature, we further show that longevity 

risk is negatively associated with the short-run consump- 

tion risk, but it is positively related to the long-run con- 

sumption risk. Therefore, the explanatory power of the 

longevity factor indeed comes from the short-run risk 

component, i.e., the business cycle component. Fourth, we 

show that longevity risk may reveal income inequality. We 

find that longevity decreases with income inequality, and 

income inequality partially contributes to the longevity 

factor. Fifth, Jegadeesh and Titman (1993) argue that for 

a risk-based explanation of momentum, the risk factors 

must be positively serially correlated. We find that the 

annual pricing kernel constructed from the consumption- 

based model is indeed positively serially correlated. This 

further validates our risk-based explanations of momen- 

tum strategy. 

This paper adds to the literature on time-preference 

shocks and asset pricing. For example, Campbell 

(1986) considers the impacts of taste shocks on asset 

returns under a power utility case. Our paper is closely 

related to Maurer (2012) and Albuquerque et al. (2016) . 

Maurer (2012) considers shocks to time preferences in an 

endowment economy and finds that time-preference 

shocks drive the equity premium, while consump- 

tion growth is of little importance. Albuquerque et al. 

(2016) consider exogenous demand shocks arising from 

random changes in investors’ time preferences and use 

them to explain the weak correlation between asset prices 

and fundamental variables at the aggregate level. Unlike 

the existing literature, which often assumes an exogenous 

and theoretical process of taste shocks, our paper provides 

a direct measure of time-preference shocks from longevity 

risk and examines its pricing power over the cross-section 

of various test assets. 

This paper also relates to the literature on income 

inequality and asset pricing. Constantinides and Duffie 

(1996) ; Johnson (2012) ; Zhang (2014) , and Brogaard et al. 

(2015) show that countercyclical income dispersion can 

generate a high equity premium. Pickett and Wilkinson 

(2009) and Chetty et al. (2016) show that inequality could 

affect longevity. This paper adds to the literature by study- 

ing the cross-sectional implications of income inequality, 

revealed by longevity risk. 

Our paper also belongs to the literature on the as- 

set pricing implications of longevity risk. Maurer (2014, 

2015) and Koijen et al. (2016a) consider the optimal port- 

folio choice problem with mortality risk. Bisetti et al. 

(2017) empirically show that longevity risk is an aggregate 

risk and investors with a long (short) horizon want to hold 

more (less) a longevity-linked security. Intuitively, we ex- 

pect that demographic changes would lead to changes in 

consumer behavior, which would then affect asset prices. 

For example, DellaVigna and Pollet (2007) and Koijen et al. 

(2016b) show that the long-term demand changes driven 

by demographic shifts predict abnormal returns in some 

industries, like the healthcare sector. Our paper adds to 

the literature by studying the cross-sectional implications 

of longevity risk in the stock markets, instead of industry- 

specific effects. 

The rest of the paper proceeds as follows. In 

Section 2 , we explore the asset pricing implications of 
time-preference shocks arising from longevity risk. In 

Section 3 , we discuss the empirical measure of longevity 

risk and GMM estimation of the model. Section 4 performs 

the cross-sectional asset pricing tests of the longevity 

factor. Section 5 provides extensive robustness checks. 

Section 6 further investigates the mechanism underlying 

the pricing of longevity risk. Finally, Section 7 concludes. 

2. Longevity risk and asset pricing 

To guide our empirical exercises, we motivate longevity 

risk as shocks to time preferences via two different chan- 

nels in a heterogeneous agents setting. First, longevity is 

related to the income level, which influences the time- 

preference rates. This is a direct channel. Second, longevity 

risk can also capture the cross-sectional income dispersion 

in a population and hence time-preference rates indirectly. 

Both channels suggests that longevity risk can be observa- 

tionally equivalent to shocks to time preferences. Then we 

generalize this idea to the recursive preferences specifica- 

tion used by Albuquerque et al. (2016) and demonstrate 

that longevity risk is a pricing factor in a consumption- 

based model. 

2.1. Motivation: longevity risk and time-preference shocks 

Consider an incomplete market with a continuum of 

heterogeneous agents of unit mass. Assume all agents 

have homogenous beliefs and are endowed with an iden- 

tical power utility, e.g., U(C it ) = 

C i,t 
1 −γ

1 −γ , where C i,t is the 

consumption of agent i at time t and γ is the rela- 

tive risk aversion. Assume agents have homogeneous time- 

preference discount rates, e.g., the subjective discount rate 

of the population at time t is β t . 
7 This setting is close to 

Constantinides and Duffie (1996) , but we allow for time- 

varying time-preference rates. Hence, the pricing kernel of 

agent i can be written as 

M 

i 
t ,t +1 = 

βt+1 

βt 

(
C i,t+1 

C i,t 

)−γ

. (1) 

Following Constantinides and Duffie (1996) , we assume 

that the consumption growth rate of agent i , 
C 

i,t+1 

C 
i,t 

, satis- 

fies 

C 
i,t+1 

C 
i,t 

= 

C t+1 

C t 
ε i 

t+1 , (2) 

where 
C t+1 

C t 
is the aggregate consumption growth rate, and 

ε i 
t+1 

denotes the idiosyncratic consumption growth. As- 

sume that logε i 
t+1 

is normally distributed with a mean of 

− 1 
2 σ

2 
y,t+1 and a variance of σ 2 

y,t+1 . σ
2 
y,t+1 denotes the cross- 

sectional dispersion of consumption growth across individ- 

uals, which is income inequality if we assume that con- 

sumption equals income. Conditional on σ 2 
y,t+1 

and 

C t+1 
C t 

, 

assuming that ε i 
t+1 

is independent across individuals, then 
βt 
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9 Using the PSID data, Storesletten et al. (2004) confirm the counter- 

cyclicality of income growth dispersion. Using a very large dataset from 

the US Social Security Administration, Guvenen et al. (2014) also find 
the pricing kernel of any agent can be written as 

M t ,t +1 = 

βt+1 

βt 
exp 

{
γ (1 + γ ) 

2 

σ 2 
y,t+1 

}(
C t+1 

C t 

)−γ

. (3)

Time-preference discount rates seem to vary with in-

come level. For example, using the Panel Study of Income

Dynamics (PSID) data, Lawrance (1991) finds that time-

preference rates for poor families are three to five per-

centage points lower than those for rich families. That is,

agents become more patient when their income increases.

Assume that the aggregate income at time t is y t . Similar

to Lawrance (1991) , we parameterize the time-preference

discount rate as a log-linear function of the aggregate in-

come at time t , as follows: 

l n βt = b 0 + b 1 l n y t , (4)

where b 0 and b 1 are constants with b 1 > 0. A positive b 1
means time-preference discount rate increases with in-

come. Then the one-period time-preference discount rate

for the population at time t is 

βt+1 

βt 
= 

(
y t+1 

y t 

)b 1 

. (5)

Previous studies suggest that income level is an impor-

tant factor determining the population longevity. Longevity

tends to increase with income (e.g., Bloom and Canning,

20 0 0 ). 8 Assume a simple parametric form of the mean life

expectancy for the population ( E t ) on aggregate income

( y t ) at time t , as follows: 

l n E t = e 0 + e 1 l n y t , (6)

where e 0 and e 1 are constants with e 1 > 0. A positive e 1
implies that life expectancy increases with income. Then

the population life expectancy grows at a rate of 

E t+1 

E t 
= 

(
y t+1 

y t 

)e 1 

. (7)

Substituting Eq. (5) into Eq. (7) , we see that longevity

growth directly captures changes in the time-preference

rates: 

βt+1 

βt 
= 

(
E t+1 

E t 

) b 1 
e 1 

. (8)

Next, similar to Constantinides and Duffie (1996) , we

assume that income inequality is negatively related to the

aggregate income growth, as follows: 

σ 2 
y,t+1 = c 0 + c 1 ln 

(
y t+1 

y t 

)
, (9)

where c 0 and c 1 are constants with c 1 < 0. Substituting

Eq. (7) into this equation, we have 

σ 2 
y,t+1 = c 0 + 

c 1 
e 1 

ln 

(
E t+1 

E t 

)
. (10)

This implies that population longevity decreases with in-

come inequality, as c 1 < 0 and e 1 > 0. This is consistent

with findings in Rodgers (1979) and Chetty et al. (2016) .

Hence, longevity may reflect income inequality as well. 
8 The exact causality is unclear. On one hand, higher income gives 

agents more resources that promote health, which increases the longevity. 

On the other hand, longevity enhances the productivity, education, and 

demographic dividends, which improve income of individuals. 
Substituting Eqs. (8) and (10) into Eq. (3) gives 

M t ,t +1 =exp 

{
γ (1 + γ ) 

2 

c 0 

}(
E t+1 

E t 

) γ (1+ γ ) c 1 +2 b 1 
2 e 1 

(
C t+1 

C t 

)−γ

. 

(11)

Define β as 

β ≡ exp 

{
γ (1 + γ ) 

2 

c 0 

}
, (12)

and L t as 

L t ≡ E 
γ (1+ γ ) c 1 +2 b 1 

2 e 1 

t . (13)

L t can be interpreted as the longevity factor at time t . Then

the pricing kernel can be rewritten as 

M t ,t +1 = β
L t+1 

L t 

(
C t+1 

C t 

)−γ

, (14)

where longevity is an additional pricing factor. Alterna-

tively, we can view the longevity factor as the stochastic

time-preference rates. 

From the asset pricing perspective, Eqs. (3) , (8) ,

and (10) say that longevity affects the pricing kernel

through two channels. First, longevity influences the time-

preference discount rate. As longevity increases, agents be-

come more patient (see Eq. (8)) . This implies a higher

marginal utility in the future and hence a negative price of

longevity risk. Second, longevity captures income inequal-

ity, as it negatively correlates with the income inequal-

ity σ 2 
y (see Eq. (10) ). Moreover, countercyclical income

dispersion can contribute to the high equity premium

( Constantinides and Duffie, 1996; Johnson, 2012 ). 9 Empir-

ically, Johnson (2012) finds that assets hedging against

inequality risk command lower returns in US markets. 10

Zhang (2014) and Brogaard et al. (2015) also find that

higher income inequality predicts a higher equity premium

in various countries. Since income inequality is positively

priced and negatively correlated with longevity, this chan-

nel also suggests a negative price of longevity risk. Over-

all, both channels imply that longevity risk is negatively

priced. 

In fact, both channels suggest that longevity factor cap-

tures time-preference shocks. This is clear for the time-

preference rate channel shown in Eq. (8) . This is also

true for the income inequality channel. Krusell and Smith

(1998) ; Suen (2014) , and Hubmer et al. (2016) show that

stochastic time-preference rates across individuals affect

cross-sectional inequality. Since longevity risk captures in-

come inequality, it reveals time-preference shocks to the

population. In short, Eqs. (13) and (14) show that we can

treat longevity factor observationally equivalent to shocks

to time preferences. 
countercyclical income growth dispersion among higher income groups. 
10 Johnson (2012) considers the impacts of inequality in incomplete 

markets where agents’ utilities are defined over relative consumption. 

Relative consumption captures agents’ status concerns. Such status con- 

cerns could affect asset prices (e.g., habit models) and longevity (due to 

social and psychological factors). 
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11 Given the small exposure at such ages, their impacts on the longevity 

estimates are negligible. 
2.2. Longevity risk and asset prices: a consumption-based 

model 

In this section, we extend the idea motivated before 

to the more general Epstein–Zin recursive preferences, i.e., 

modeling longevity risk through the random time discount 

rate process. This setup is similar to that of Albuquerque 

et al. (2016) and Hubmer et al. (2016) . We assume in- 

vestors are endowed with recursive preferences as follows: 

 t = 

{ 

L t C 
1 −γ
θ

t + β[ E t U 

1 −γ
t+1 

] 
1 
θ

} 

θ
1 −γ

, (15) 

where L t captures the random time discount due to 

longevity shocks, C t is the consumption at time t, β is the 

usual time discount, γ measures the relative risk aversion, 

θ = 

1 −γ

1 − 1 
ψ 

, and ψ is the elasticity of intertemporal substitu- 

tion. When γ = 

1 
ψ 

, the recursive preferences reduce to the 

power utility case. 

Then the pricing kernel is 

M t ,t +1 = β
L t+1 

L t 

[ 
C t+1 

C t 

] − 1 
ψ 

[ 

U 

1 −γ
t+1 

E t U 

1 −γ
t+1 

] 1 − 1 
θ

. (16) 

As in Epstein and Zin (1991) , let the return on the aggre- 

gate wealth portfolio be R w,t+1 ; then we can rewrite the 

above pricing kernel as 

M t ,t +1 = 

[ 
β

L t+1 

L t 

] θ[ C t+1 

C t 

] − θ
ψ 

R 

θ−1 
w,t+1 . (17) 

The pricing kernel includes the usual consumption growth 

rate, the return on the aggregate wealth portfolio, and the 

changes in the time discount factor arising from longevity 

risk. Thus, longevity risk matters for asset pricing. Taking 

the logarithm of the pricing kernel, we have 

m t+1 = θ logβ + θ�l t+1 − θ

ψ 

�c t+1 + (θ − 1) r w,t+1 , (18) 

where m t+1 = logM t ,t +1 , �l t+1 = log L t+1 − logL t , �c t+1 = 

log C t+1 − logC t , and r w,t+1 = logR w,t+1 . Therefore, the inno- 

vations of the pricing kernel can be written as 

m t+1 − E t [ m t+1 ] = θ (�l t+1 − E t [�l t+1 ]) 

− θ

ψ 

(�c t+1 − E t [�c t+1 ]) 

+(θ − 1)(r w,t+1 − E t [ r w,t+1 ]) . (19) 

This suggests a linear three-factor model. Define the 

factor vector as 

f t+1 = 

( 

�l t+1 

�c t+1 

r w,t+1 

) 

, (20) 

and let the coefficient vector be 

b = 

( 

b L 
b C 
b M 

) 

= 

( −θ
θ
ψ 

1 − θ

) 

; (21) 

then by log-linearization we have 

M t ,t +1 

E [ M t ,t +1 ] 
≈1 + m t+1 −E [ m t+1 ]=1 − b ′ ( f t+1 −μ f ) , (22) 
where μ f = E [ f t+1 ] , which are the unconditional means of 

the factors. From the basic asset pricing equation, we have 

E [ R 

e 
i,t+1 M t ,t +1 ] = 0 = E 

[
M t ,t +1 

E [ M t ,t +1 ] 
R 

e 
i,t+1 

]
, (23) 

where R e 
i,t+1 

is the excess return of asset i at time t + 1 .

This implies 

E [ R 

e 
i,t+1 (1 − b ′ ( f t+1 − μ f ))] = 0 . (24) 

The three-factor linear asset pricing model is 

E [ R 

e 
i,t+1 ] = b ′ Cov ( f t+1 , R 

e 
i,t+1 ) = λ′ 
−1 

f 
Cov ( f t+1 , R 

e 
i,t+1 ) 

= b L Cov (�l t+1 , R 

e 
i,t+1 ) + b C Cov (�c t+1 , R 

e 
i,t+1 ) 

+ b M 

Cov (r w,t+1 , R 

e 
i,t+1 ) , (25) 

where 
f is the covariance matrix of factors f; λ contains 

the prices of factor risks and λ = 
 f b. 

In the special case of a power utility specification, we 

have a two-factor model: 

E [ R 

e 
i,t+1 ] = b L Cov (�l t+1 , R 

e 
i,t+1 ) + b C Cov (�c t+1 , R 

e 
i,t+1 ) . 

(26) 

3. Estimating the longevity risk 

3.1. Data description 

The annual US data of population, exposure, and 

mortality rates are obtained from the Human Mortality 

Database (HMD) (see Internet Appendix A for more de- 

tails about data construction). Due to its accessibility, reli- 

ability, and consistency over time, it has been widely used 

in demographic and actuarial research. HMD uses the offi- 

cial population estimates available from the Census Bureau 

with several adjustments. For example, HMD adjusts the 

population estimates to exclude the military population to 

make the population estimates consistent over time. HMD 

also distributes the population in the open age interval 

into a single year of age and reestimates the population as 

of January 1 for each year. HMD takes the death data from 

the National Vital Statistics Reports by the National Center 

for Health Statistics. HMD distributes the death counts into 

a single year of age using cubic spline and then assigns 

deaths of unknown ages into each age category. For the 

purpose of our analysis, we use the mortality series from 

1963 to 2014. The age range we consider is 0–99, as the 

number of deaths for age 100 and beyond is very volatile 

and the data are not as reliable. 11 

3.2. Estimating longevity shocks 

We first measure longevity shocks with a model-free 

approach, which is computed as the first-order differ- 

ence of the weighted average period life expectancy, E t . 

Life expectancy at birth is a common measure of human 

longevity. However, it ignores the life expectancy, or deci- 

sion horizon, of older members in an economy. To capture 
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this, we compute E t as life expectancy weighted by expo-

sure across all ages, as follows: 

E t = 

∑ 99 
x =0 (x + e x,t ) E x,t ∑ 99 

x =0 E x,t 

, 

where e x, t is the period life expectancy for a person aged

x in year t , and E x, t is the corresponding exposure. 12 Then

longevity shocks can be computed as innovations in the

life expectancy: 13 

dE t = E t − E t−1 . (27)

A positive shock to life expectancy implies an increase in

longevity. 

Longevity shocks are positive on average due to the

increase in life expectancy in the last century. Longevity

shocks are also very volatile, as shown in Fig. 1 . Panel A

of Table 1 provides descriptive statistics of longevity risk,

dE t . dE t has a mean of 0.14 years, a standard deviation of

0.15 years, and a negative first-order autocorrelation of –

0.10. Augmented Dickey-Fuller tests show that E t has a unit

root, but longevity shocks ( dE t ) are stationary. 

3.3. GMM estimation 

In this section, we directly test the pricing power of the

consumption-based model over various assets via GMM es-

timation. The unconditional asset pricing Eq. (24) gives us

the moment conditions. Following Cochrane (2005) , we in-

clude the pricing factors as additional moment constraints.

That is, we use the following moment conditions, 

E 

[
R 

e 
i,t+1 

[1 − b ′ ( f t+1 − μ f )] 

f t+1 − μ f 

]
= 0 , (28)

where the coefficients b and the factor means μf are to

be estimated. We use a two-step GMM estimation with a

Newey–West one-lag adjustment. 14 

Our test assets include six size and book-to-market

sorted portfolios, six size and investment sorted portfo-

lios, six size and operating profitability sorted portfolios,
12 e x, t is approximated by 
∑ 99 

s =0 s +0 . 5 p x,t , where s p x, t is the probability 

that a person aged x would survive for another s years if she were to 

experience the mortality rates q x,t , q x +1 ,t , . . . , q 99 ,t . Exposure is the person- 

year lived for a group of people. Exposure for age x in year t is computed 

as 

E x,t = 

1 

2 
(P x,t + P x,t+1 ) + 

1 

6 
(D 

L 
x,t − D 

U 
x,t ) , 

where P x,t is the population estimate for age x on January 1 in year t , 

and D x,t is the number of deaths for age x in year t . The superscript L ( U ) 

denotes the number of lower triangle (upper triangle) deaths in the Lexis 

diagram. 
13 Alternatively, Eqs. (14) and (16) suggest that we can measure 

longevity shocks as the longevity growth rates. We find that these two 

measures provide similar results, as shown in Internet Appendix E. But 

measuring longevity risk as the first-order difference provides an easy 

way to interpret the GMM estimation results in the next section, e.g., the 

price of a one-year increase in longevity. 
14 GMM estimates are often sensitive to the specifications, especially the 

weighting matrix. We evaluate various GMM estimation procedures in In- 

ternet Appendix B. To be conservative, we report two-step GMM with 

one-lag Newey–West adjustment as our main results. 

 

 

 

 

 

 

 

 

 

 

 

 

and six size and momentum sorted portfolios. Consump-

tion refers to the nondurable goods and services consump-

tion. Kroencke (2017) argues that the national income and

product accounts (NIPA) data have significant measure-

ment errors due to time aggregation and the filters used.

Thus, we follow his recommendation and use his unfil-

tered consumption data. Similar to Epstein and Zin (1991) ,

we proxy the aggregate wealth portfolio using the stock

market portfolio. 15 For easy interpretation, we proxy the

shocks to time preferences ( �l t+1 ) by the longevity shocks

( dE ). 16 We obtain the annual data of test assets and the

Fama-French three factors from Kenneth French’s website.

Stock returns are adjusted by the Consumer Price Index

and converted into real returns when necessary. As portfo-

lios on investment and operating profitability start in 1964,

our annual data are from 1964 to 2014. 

Table 2 presents the GMM estimation results. We first

consider the simple power utility case in Column (1). Then

we move to the general recursive preferences in Column

(2). Note that some coefficients are constrained in some

cases, as shown in Eq. (21) . For example, in the power util-

ity case, b L must be –1, because γ = 

1 
ψ 

and θ = 1 . Also,

in the recursive preferences case, b M 

= 1 + b L . Therefore,

we impose these restrictions during GMM estimation. For

comparison, we also consider CAPM in Column (3) and

the Fama–French three-factor model in Column (4). Panel

A presents the coefficient estimates for b . Then, Panel B

computes the implied price of risk for each factor ( λ), i.e.,

λ = 
 f b. Panel C reports the relative risk aversion ( γ ) and

elasticity of intertemporal substitution ( ψ) implied by the

estimates in Panel A. That is, from Eq. (21) , we know that

γ = 1 + (b L + b C ) and ψ = −b L /b C . Lastly, Panel D tests the

goodness of fit for each model. We compute the adjusted

R 2 , root-mean-square errors ( RMSE ), and the Hansen’s J -

test of overidentification. R 2 is defined as one minus the

ratio of the cross-sectional variance of the pricing errors

to the cross-sectional variance of realized average portfolio

returns, following Campbell and Vuolteenaho (2004) . 

We first investigate our main model, the case of recur-

sive preferences in Column (2). Shocks to the time pref-

erences, i.e., longevity risk, are significantly priced. Column

(2) shows that longevity risk has a coefficient of –1.30 with

a t -statistic of –5.30, which corresponds to a price of risk

of −5 . 17% . That is, a one-year increase in longevity corre-

sponds to a decrease of 5.17% in asset returns. This is close

to the IMF (2012) estimate that each additional year of life

expectancy increases 3%–4% to the present value of liabili-

ties of a typical defined benefit pension plan. Consumption

is significantly priced in the cross-section as well, with a

coefficient of 25.42 ( t -statistic = 11.51), and the market fac-

tor has a price of risk of 2.61%. The main model implies

a relative risk aversion of 25.13 and a small elasticity of
15 Admittedly, this proxy neglects many important assets in the mar- 

ket (e.g., real estate) as the stock market portfolio is only a subset of the 

aggregate wealth portfolio. However, we can interpret the stock market 

portfolio as the instrumental variable for the aggregate wealth portfolio 

in the GMM estimation, since the stock market portfolio should be highly 

correlated with the aggregate wealth portfolio. 
16 Hall and Jones (2007) also use the reciprocal of life expectancy to 

measure the time discount rate. 
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Table 1 

Longevity risk: descriptive statistics and relations with other factors. 

Panel A summarizes the annual statistics of longevity risk ( dE ), the mimicking portfolio returns of longevity risk 

( PL , in %), and the mimicking portfolio returns of consumption risk ( PC , in %). The full-sample data are used in 

estimating the mimicking portfolio returns. AR (1) denotes the first-order autocorrelation of each series. Panel B 

reports the sample means, standard deviation, Sharpe ratio, and correlations for the Fama–French three factors, 

momentum factor (MOM), the mimicking portfolio for longevity risk ( PL ), and the mimicking portfolio for con- 

sumption risk ( PC ), using annual data. Panel C reports the time-series regressions of the longevity factor against 

the Fama–French three-factor model or the Fama–French three-factor model augmented with the momentum 

factor, using monthly data. Panel D reports the time-series regressions of the consumption factor against the 

Fama–French three-factor model or the Fama–French three-factor model augmented with the momentum factor, 

using monthly data. The Newey–West t -statistics with six lags are in parentheses. The sample data are from 

1963 to 2014. 

Panel A: Descriptive statistics 

Mean Median Std. dev. Min. Max. AR(1) 

dE 0.14 0.14 0.15 −0.26 0.47 −0.10 

PL (%) −9.81 −9.81 11.88 −30.56 40.70 0.04 

PC (%) 13.15 15.18 14.22 −17.50 45.72 0.09 

Panel B: Factor means, volatilities, and correlations 

Factor Mean (%) Std. dev. (%) Sharpe ratio SMB HML MOM PL PC 

R M 6.84 17.82 0.38 0.28 −0.27 −0.17 −0.21 0.44 

SMB 3.44 13.89 0.25 −0.01 −0.12 0.05 −0.05 

HML 5.07 13.59 0.37 −0.19 0.12 0.60 

MOM 8.57 18.28 0.47 −0.82 0.05 

PL −9.81 11.88 −0.83 −0.44 

PC 13.15 14.22 0.92 

Panel C: Time-series regressions 

PL t = α + βM R Mt + βSMB SMB t + βHML HML t + βMOM MOM t + εt 

α(%) βM βSMB βHML βMOM R 2 

Model (1) −0.75 −0.18 0.09 0.14 0.10 

( −7.46) ( −3.32) (1.34) (1.26) 

Model (2) −0.18 −0.30 0.10 −0.06 −0.63 0.83 

( −3.64) ( −17.94) (3.31) ( −1.42) ( −30.96) 

Panel D: Time-series regressions 

PC t = α + βM R Mt + βSMB SMB t + βHML HML t + βMOM MOM t + εt 

α(%) βM βSMB βHML βMOM R 2 

Model (1) 0.45 0.60 −0.25 0.79 0.79 

(8.18) (21.56) ( −9.70) (13.44) 

Model (2) 0.20 0.65 −0.25 0.88 0.29 0.92 

(4.96) (50.25) ( −8.92) (22.85) (13.80) 
intertemporal substitution of 0.05. These estimates are 

close to those in Kroencke (2017) . 17 Examining the good- 

ness of fit in Panel D, we see that the main model has an 

R 2 of 0.91 and the RMSE is 1.06% per year only. The J -test 

cannot reject the model at the 1% significance level, which 

suggests that the model prices the 24 test assets. 

Turning to the power utility case in Column (1), we 

see that it shows slightly larger RMSE than the main 

model, but it works fairly well. Column (1) reports that the 

longevity factor is significantly priced at –4.47% and the es- 

timated relative risk aversion is 23.91. Both are close to the 

estimates in Column (2). In fact, the success of a power 

utility can be deduced from the recursive preferences in 

Column (2). Since the estimated related risk aversion ( γ ) 

is very close to the reciprocal of the estimated elasticity of 

intertemporal substitution (1/ ψ), the recursive preferences 

are very close to those of a power utility. This explains why 

the results in Columns (1) and (2) are very close. 
17 The estimate of relative risk aversion appears to be smaller than the 

typical estimate in the literature. This is largely due to the fact that the 

unfiltered annual consumption data are very volatile. The standard devia- 

tion of unfiltered consumption is 2.62%, while it is only 1.34% in the orig- 

inal NIPA data. If we use the original NIPA consumption data, the main 

model implies a relative risk aversion of 38.93. 
The consumption-based models perform well in the 

cross-section of 24 test assets in Columns (1) and (2). In 

contrast, CAPM, in Column (3), and the Fama-French three- 

factor model, in Column (4), generate large pricing errors. 

Although the market factor is significantly priced, CAPM 

has an RMSE of 3.22%, together with an R 2 as low as –0.01 

in Column (3). The Fama–French three-factor model also 

shows a large RMSE of 2.34% and a moderate R 2 of 0.48 

in Column (4). Overall, the consumption-based models per- 

form better than CAPM and the Fama–French three-factor 

model. 

4. Cross-section of portfolios sorted by size and 

momentum 

In the previous sections, we demonstrate the pricing 

power of longevity factor, especially for the momentum 

portfolios. But we still need to understand why longevity 

captures the cross-sectional return variations. To this end, 

in this section, we further examine the ability of longevity 

risk to explain the time-series and cross-sectional varia- 

tion in returns on momentum portfolios, using the stan- 

dard Fama–MacBeth regressions. The main test assets are 

25 size and momentum sorted portfolios over July 1963 to 

December 2014, which are obtained from Kenneth French’s 
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Table 2 

Estimating consumption-based models, CAPM, and the Fama–French model: two-step GMM with Newey–West one-lag adjustment. 

This table presents the two-step GMM estimation with one-lag Newey–West adjustment of consumption-based CAPM (see, e.g., 

Eq. (28) ). Factors include shocks to the time preferences, consumption growth rate, and the market portfolio. The unfiltered consump- 

tion data on nondurable goods and services are from Kroencke (2017) . The shocks to time preferences are measured as the first-order 

difference of the weighted average period life expectancy. Test assets include six size and book-to-market sorted portfolios, six size 

and investment sorted portfolios, six size and operating profitability sorted portfolios, and six size and momentum sorted portfolios. 

Stock returns are adjusted by the consumption price index to convert into real returns when necessary. Column (1) presents estimates 

from a power utility, while Column (2) presents results from the Epstein–Zin recursive preferences. For comparison, Columns (3) and 

(4) present GMM estimates from CAPM and the Fama–French three-factor model. Panel A shows the coefficients ( b ) from the GMM 

estimation, and their t -statistics are in parentheses. ∗ indicates that the coefficient is restricted by the model, not by the estimation. 

Panel B reports the implied price of risk ( λ) for each factor, based on estimates in Panel A. Panel C presents the implied parameters, i.e., 

relative risk aversion ( γ ) and the elasticity of intertemporal substitution ( ψ). Panel D provides statistics of goodness of fit, including 

R 2 , root-mean-square errors ( RMSE ), and Hansen’s J -test of overidentification. R 2 is defined as one minus the ratio of the cross-sectional 

variance of the pricing errors to the cross-sectional variance of realized average portfolio returns, following Campbell and Vuolteenaho 

(2004) . The annual data from 1964 to 2014 are used. 

Consumption CAPM CAPM Fama–French model 

Power utility Recursive preferences 

(1) (2) (3) (4) 

Panel A: Coefficients 

Longevity ( b L ) −1 −1.30 

( ∗) ( −5.30) 

Consumption ( b C ) 23.91 25.42 

(11.33) (11.51) 

Market ( b M ) −0.30 2.62 2.47 

( ∗) (4.00) (3.42) 

SMB ( b SMB ) 0.33 

(0.47) 

HML ( b HML ) 3.60 

(6.33) 

Panel B: Implied price of risk 

Longevity ( λL , %) −4.47 −5.17 

Consumption ( λC , %) 1.72 1.82 

Market ( λM , %) 2.61 8.74 6.18 

SMB ( λSMB , %) 2.29 

HML ( λHML , %) 5.14 

Panel C: Implied parameters 

γ 23.91 25.13 

ψ 0.05 

Panel D: Goodness of fit 

R 2 0.91 0.91 −0.01 0.48 

RMSE (%) 1.08 1.06 3.22 2.34 

p -value ( J ) 0.46 0.41 0.40 0.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

website. These 25 size-momentum portfolios are sorted

by the market capitalization and prior 11-month returns

(skipping one month) at the end of the previous month. 

4.1. Estimating mimicking portfolios of consumption and 

longevity risks 

We first construct mimicking portfolios to track the

consumption factor and longevity shocks. 18 The mimicking

portfolio approach is simple and easy to interpret, but one

difficulty is that we have only annual data of consumption

and longevity risks. Following Adrian et al. (2014) , we first

construct a mimicking portfolio of consumption (longevity)

risk by projecting the consumption (longevity) risk onto

a set of base asset returns at an annual frequency. Then

we apply the same set of normalized weights to the base
18 Ideally, we would use market-based measures to track the consump- 

tion factor and longevity risk. However, there is no financial assets di- 

rectly linked to the consumption risk. Also, longevity products, such as 

longevity swaps, longevity bonds, or annuity products, started trading 

only recently and have a limited number of observations. 

 

assets at a monthly frequency. This gives us the monthly

mimicking portfolio returns. 

Specifically, we first run the following regressions: 

dc t = κ0 ,c + κ ′ 
x,c X t + u t , (29)

dE t = κ0 ,E + κ ′ 
x,E X t + z t , (30)

where X t represents the excess returns on base assets;

κ0, c , κx,c , κ0, E , and κx,E are coefficients. To avoid arbitrari-

ness, we apply the same set of base assets to construct

the mimicking portfolios for both consumption risk and

longevity risk. 19 We use the same set of base assets as

in Adrian et al. (2014) , i.e., the six Fama–French bench-

mark portfolios on size (small and big) and book-to-market

(low, median, and high) in excess of the risk-free rate and
the momentum factor. We choose these base assets to 

19 One concern is that those mimicking portfolios may be correlated, 

which leads to multicollinearity issues in regressions. We will address this 

issue later. 
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Fig. 2. Annual momentum factor and the mimicking factor of longevity risk. This figure plots the annual momentum factor ( MOM ) and returns to the 

mimicking portfolio of longevity risk ( PL ). 

 

 

extract consumption and longevity information from as- 

set returns as much as possible, especially given the high 

correlation between longevity risk and momentum pre- 

sented in Fig. 1 . However, one might be concerned that 

the mimicking longevity factor will artifactually do well 

for momentum portfolios. We address this concern in two 

ways. First, we test the pricing power of longevity risk 

with alternative assets in Section 5.2 , in addition to the 

momentum portfolios. Second, as an alternative method, 

the GMM estimation of the consumption-based models in 

Section 3.3 avoids this issue. 

Without loss of generality, we normalize the weights, 

κx , to sum to one for easy interpretation. The mim- 

icking consumption portfolio return ( PC t ) and mimicking 

longevity portfolio return ( PL t ), are given by the fitted val- 

ues, as follows: 

P C t = ̃

 κ ′ 
x,c X t , (31) 

P L t = ̃

 κ ′ 
x,E X t , (32) 

where ˜ κx are normalized weights, e.g., ˜ κx,c = 

κx,c 

| ∑ 

κx,c | 
and 

˜ κx,E = 

κx,E 

| ∑ 

κx,E | . The annual data of base assets are 

obtained from Kenneth French’s website. The mimick- 

ing portfolio returns are estimated via ordinary least 

squares with a full sample or extending windows 

of data. For example, the normalized weights from 

a full-sample estimation over 1963–2014 are ˜ κx,c = 

[ −0 . 93 , 0 . 83 , 0 . 10 , 0 . 24 , 0 . 08 , 0 . 41 , 0 . 28] ′ and 

˜ κx,E = [0 . 53 ,

−0 . 93 , 0 . 25 , −0 . 26 , −0 . 37 , 0 . 41 , −0 . 61] ′ . Overall, the mim-

icking portfolio tracks the longevity risk very well. We find 

that the correlation between the annual longevity risk and 

its mimicking portfolio returns is 0.31. We see that PL is 

negatively correlated with the momentum factor, while its 

correlation with the size and book-to-market factors is less 

clear. The correlation between the longevity risk and mo- 

mentum profits is apparent in Fig. 1 . Echoing this correla- 

tion, Fig. 2 plots the annual momentum factor ( MOM ) and 
returns on the mimicking portfolio of longevity risk ( PL ). 

We see that the mimicking portfolio PL closely tracks the 

annual momentum profits (moving in opposite directions), 

including the huge momentum crash in 2009. Panels A and 

B of Table 1 present descriptive statistics of the portfolios 

mimicking consumption and longevity risks. The mimick- 

ing longevity factor ( PL ) has an average return of –9.81% 

and a standard deviation of 11.88% per year. This implies 

a Sharpe ratio of –0.83; the magnitude is much higher 

than the Sharpe ratios of the Fama–French three factors 

and the momentum factor. PL is highly correlated with the 

momentum factor with a correlation coefficient of –0.82, 

while its correlation with the Fama–French three factors is 

minor. The mimicking consumption factor ( PC ) has an aver- 

age return of 13.15% and a standard deviation of 14.22% per 

year. PC is highly correlated with the market factor, value 

factor ( HML ), and the longevity factor, but not the momen- 

tum factor. 

Next, we apply the same set of normalized weights 

to the base assets at a higher frequency, i.e., monthly, to 

obtain the monthly mimicking portfolio returns. We will 

use the monthly mimicking factor returns in the cross- 

sectional asset pricing tests later. As preliminary tests, 

Panel C of Table 1 regresses the mimicking longevity fac- 

tor against the benchmark Fama–French three factors or 

the Fama–French three factors plus the momentum fac- 

tor. Model (1) shows that the Fama–French three factors 

explain little of the mimicking longevity risk. The R 2 is 

as low as 0.10, and there is a large alpha of –0.75% per 

month. Adding the momentum factor to the Fama–French 

three-factor model, Model (2) shows that the momentum 

factor captures a significant part of longevity risk. Model 

(2) produces a much higher R 2 of 0.83 and a smaller al- 

pha of –0.18. In summary, Panel C of Table 1 suggests 

that longevity risk is unlikely to be captured by the Fama–

French three factors and is highly correlated with the mo- 

mentum factor. This gives us the first piece of evidence 

as to why longevity risk is able to explain the momentum 

profits. 
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Turning to the mimicking consumption factor, Panel D

of Table 1 suggests that Fama–French three factors capture

most of the consumption factor. For example, the R 2 in

Model (1) is as high as 0.79. Adding the momentum factor

in Model (2) only improves the R 2 slightly. This suggests

that Fama–French three factors are reasonable proxies for

the consumption factor. 

4.2. Empirical models 

Our first model is the consumption-based three-factor

model in Eq. (25) , as follows: 

R it = αi + βMi R Mt + βPCi P C t + βPLi P L t + ε it , (33)

where R it is the excess return of test asset i in month t;

R Mt is the market factor in month t; PC t and PL t are the

returns of the portfolios mimicking consumption risk and

longevity risk in month t , respectively. 

However, as noted in Table 1 , the mimicking consump-

tion portfolio ( PC ) is highly correlated with the market fac-

tor and the longevity factor. Such high correlations would

generate multicollinearity concerns, if we include all three

factors in the regressions. We address this issue via two al-

ternative models. The GMM estimation results in the previ-

ous section show that the power utility specification works

almost as well as the recursive preferences. This suggests

that we can use the simple two-factor model in Eq. (26) ,

which is based on the power utility, as follows: 

R it = αi + βPCi P C t + βPLi P L t + ε it . (34)

This is our first alternative model. This two-factor model

removes the market factor from the three-factor model and

hence alleviates the multicollinearity problem. 

Our second alternative model is the Fama–French three-

factor model augmented with the longevity factor: 

R it =αi +βMi R Mt + βSMBi SMB t + βHMLi HML t + βPLi P L t + ε it , 
(35)

where R Mt , SMB t , and HML t are the Fama-French three-

factor returns in month t . That is, we replace the mar-

ket factor and the consumption factor in Model (33) with

the Fama–French three factors. This can be viewed as

a reduced form approximation of the consumption-based

three-factor model. We propose to use the Fama–French

three factors to proxy for the consumption risk instead

of using the mimicking consumption portfolio for sev-

eral reasons. First, this avoids any potential multicollinear-

ity problem, because Panels B and C of Table 1 show

that the mimicking longevity portfolio is not significantly

correlated with the Fama–French three factors. Second,

consumption data are notoriously noisy and hence less

desirable in asset pricing tests, while beta pricing models

often perform better. Empirically, as shown in Panels B and

D of Table 1 , Fama-French three factors seem to capture

a large amount of consumption risk. 20 Third, Fama–French

factors are readily available at high frequencies, while con-

sumption data are available at annual (quarterly) frequency

only. We have to extrapolate the consumption factor to a
20 Liew and Vassalou (20 0 0) suggest that Fama–French three factors 

proxy for the macroeconomic variables. 

 

 

 

 

higher frequency, and the performance deteriorates. Last,

given the popularity of the Fama–French model, it would

be interesting to see if longevity risk has any additional

pricing power over the Fama-French factors. 

Next, we estimate prices of risks using the Fama and

MacBeth (1973) two-stage method over various models. In

the first stage, we run the time-series regressions of Mod-

els (33) –(35) to estimate betas. Then we use betas as inde-

pendent variables in the following cross-sectional regres-

sions in each month t to estimate the prices of risks in

various models: 

R it = γ0 + γM ̂

 βMi + γPC ̂
 βPCi + γPL ̂

 βPLi + εit , (36)

R it = γ0 + γPC ̂
 βPCi + γPL ̂

 βPLi + εit , (37)

R it = γ0 + γM ̂

 βMi + γSMB ̂
 βSMBi + γHML ̂

 βHMLi + γPL ̂
 βPLi + εit . 

(38)

We follow Shanken (1992) to adjust for the errors-in-

variables problem when estimating the γ terms (prices of

risks). The adjusted cross-sectional R 2 is computed as in

Jagannathan and Wang (1996) . Lewellen et al. (2010) ar-

gue that it is easy to find a high cross-sectional R 2 when

there is a strong factor structure. We follow Lewellen et al.

(2010) to construct a sampling distribution of the adjusted

R 2 . Specifically, we bootstrap the time-series data of re-

turns and factors by sampling with replacement. Then

we estimate the adjusted R 2 . We repeat these procedures

10,0 0 0 times and report the 5th and 95th percentiles of

the sampling distribution. Following Lewellen et al. (2010) ,

we add the traded portfolios as the test assets of the re-

gressions to restrict the cross-sectional price of risk for a

factor as the factor’s expected excess return. 

4.3. Prices of risks 

Table 3 presents the main results from the Fama-

MacBeth regressions, using the standard Fama–French

three-factor model and Models (33) –(35) with the monthly

data. Panel A reports the risk prices from the full-sample

estimation. The mimicking portfolios and the betas are

estimated from a full sample over July 1963 to Decem-

ber 2014. As expected, the Fama–French three factors per-

form poorly in explaining the 25 size-momentum portfo-

lios. The intercept γ 0 in Column (1) is 0.74% per month,

which is significant at the 1% level, together with a very

low R 2 of 0.07. This implies that some of the 25 portfo-

lios are mispriced by the Fama–French three-factor model.

Examining the consumption-based three-factor model, we

see Column (2) shows an adjusted R 2 of 0.80, which is

in the right tail of its distribution. But even the 5 th per-

centile of R 2 in Column (2) is as high as 0.63, which is

higher than the 95 th percentile of R 2 (0.34) generated by

the Fama-French three-factor model in Column (1). This

signals the good fit of this model. The longevity risk ( PL )

has a negative price of –0.83% per month, which is sig-

nificant at the 1% level. The market factor and consump-

tion factor are significantly priced, with a monthly price

of 0.66% and 0.73%, respectively. But Column (2) shows
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Table 3 

Cross-sectional regressions: main results. 

This table presents Fama–MacBeth regressions using the excess returns 

of 25 portfolios sorted by size and momentum. Factors include the 

Fama–French three factors, the mimicking portfolio for consumption 

factor ( PC ), and the mimicking portfolio for longevity factor ( PL ). The 

factor betas, which are the independent variables in the regressions, 

are computed either over the full sample (full-sample betas in Panel 

A) or in extending windows (extending-window betas in Panel B). All 

coefficients are multiplied by 100. The t -statistics are in parentheses 

and adjusted for errors-in-variables, following Shanken (1992) . The ad- 

justed R 2 follows Jagannathan and Wang (1996) . The 5th and 95th per- 

centiles of the adjusted R 2 distribution from a bootstrap simulation of 

10,0 0 0 times are reported in brackets. The sample period is from July 

1963 to December 2014. 

Panel A: Full-sample betas 

(1) (2) (3) (4) 

γ 0 0.74 0.09 0.18 0.02 

(5.85) (1.92) (1.44) (0.49) 

γ M −0.09 0.66 0.56 

( −0.42) (3.50) (3.04) 

γ SMB 0.24 0.24 

(1.80) (1.80) 

γ HML −0.46 0.36 

( −2.39) (2.61) 

γ PC 0.73 0.80 

(4.49) (4.55) 

γ PL −0.83 −0.84 −0.80 

( −6.50) ( −6.54) ( −6.17) 

R 2 0.07 0.80 0.81 0.91 

[ −0.07, 0.34] [0.63, 0.88] [0.55, 0.88] [0.81, 0.94] 

Panel B: Extending-window betas 

(1) (2) (3) (4) 

γ 0 0.35 0.14 0.40 0.10 

(2.31) (1.24) (1.53) (1.26) 

γ M 0.40 0.79 0.66 

(1.43) (2.96) (2.70) 

γ SMB 0.02 0.09 

(0.11) (0.56) 

γ HML −0.18 0.20 

( −0.75) (0.98) 

γ PC −4.01 −4.47 

( −1.04) ( −1.14) 

γ PL −0.85 −0.86 −1.06 

( −3.41) ( −3.78) ( −4.55) 

R 2 −0.00 0.94 0.94 0.86 

[ −0.12, 0.48] [0.69, 0.99] [0.46, 0.99] [0.72, 0.92] 

 

21 This is due to the multicollinearity problem. 
a marginally significant intercept of 0.09% per month ( t - 

statistic = 1.92), which might be due to the multicollinear- 

ity, given the high correlation between the mimicking con- 

sumption portfolio and the market factor, the mimicking 

longevity factor. We further tackle this multicollinearity is- 

sue in two ways (see Internet Appendix C for more de- 

tails). First, following Menkhoff et al. (2012) , we project 

the mimicking consumption portfolio on the market fac- 

tor and the mimicking longevity portfolio and then use 

the orthogonalized component of consumption factor in 

the regressions. We find that the pricing error is insignif- 

icant. This signals the distortions due to multicollinearity. 

Second, we perform the partial least square (PLS) regres- 

sions. PLS regressions consider the correlation with depen- 

dent variables when extracting the key components from 

predictors ( Kelly and Pruitt, 2013, 2015 ). We extract two 

predictor scores from the three factors, e.g., the market fac- 
tor,the mimicking consumption portfolio, and the mimick- 

ing longevity portfolio. Then we use these two predictor 

scores in the Fama–MacBeth regressions. Again, we find 

the pricing error becomes insignificant. 

The two-factor model in Column (3) produces results 

similar to those in Column (2), but it has an insignif- 

icant intercept of 0.18% per month ( t -statistic = 1.44). Fi- 

nally, we see the Fama–French model augmented with the 

longevity factor in Column (4) provides the best fit, with 

an R 2 of 0.91 and a tiny intercept of 0.02% per month 

( t -statistic = 0.49). Column (4) also shows reasonable esti- 

mates of the Fama–French three factors. Examining across 

Columns (2)–(4), we see all models perform well and pro- 

duce very close estimates of longevity factor. Overall, the 

two-factor model, Column (3), performs comparably to 

the three-factor model, Column (2). Practically, the Fama–

French model augmented with the longevity factor, Col- 

umn (4), performs best. This is probably due to the fact 

that the Fama–French model augmented with the longevity 

factor avoids the multicollinearity problem. 

Fig. 3 visualizes the performance of the Fama–French 

model and the Fama–French model augmented with 

longevity factor. We plot the fitted average return of each 

portfolio against its realized average return. The fitted re- 

turn is computed using the beta estimates from a given 

model specification. The realized average return is the 

time-series average of the portfolio return over July 1963 

to December 2014. If the model is correctly specified, then 

the fitted and realized average returns should be the same 

and lie on the 45-degree line through the origin. Panel 

(a) shows that the Fama–French model exhibits significant 

pricing errors. The fitted and realized average returns lie 

on a flat line, which implies that the Fama–French model 

overestimates (underestimates) the returns of the losers 

(winners) portfolio. In contrast, Panel (b) shows that the 

Fama–French model augmented with longevity factor suc- 

cessfully captures the momentum portfolios. The fitted and 

realized average returns closely lie on the 45-degree line in 

Panel (b). 

To avoid the look-ahead bias, we also follow Ferson and 

Harvey (1999) to estimate the risk prices with extending 

windows in Panel B of Table 3 . We require at least 20 an-

nual observations to estimate the mimicking portfolios, so 

the cross-sectional regressions start in 1983. Panel B shows 

similar results as Panel A, except that the consumption fac- 

tor becomes insignificant. 21 Again, we see that longevity 

risk is negatively priced and captures the momentum prof- 

its very well (all intercepts in Columns (2)–(4) are insignif- 

icant). 

4.4. Factor loadings of momentum portfolios on longevity 

risk 

A negative price of longevity risk means that stocks 

that covary positively with longevity risk ( dE t ) should have 

lower expected returns because these stocks have higher 

payoffs when dE t is high, i.e., when longevity increases. 

That is, these stocks provide hedging against increases in 
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(a) The Fama-French three-factor model
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(b) The Fama-French model augmented with longevity factor

Fig. 3. Fitted returns versus average realized returns. This figure shows realized average returns on the horizontal axis and fitted returns on the vertical 

axis for 25 portfolios sorted by size and momentum. For each portfolio, the realized average return is the time-series average of the portfolio returns, and 

the fitted return is from the corresponding model. The straight line is the 45-degree line from the origin. The sample period is from July 1963 to December 

2014. 
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Table 4 

Time-series regressions of the Fama–French model augmented with the longevity risk factor. 

This table reports the intercepts (in % per month) and factor loadings from full-sample time-series regressions of 25 portfolios sorted 

by size and momentum. Factors include the Fama–French three factors and the mimicking portfolio for longevity risk ( PL ). The standard 

errors of residuals ( s ( e )) are reported in percentages. The Newey–West t -statistics with six lags are provided. The sample period is from 

July 1963 to December 2014. 

Losers 2 3 4 Winners Losers 2 3 4 Winners 

α diff t -statistic diff

Small −0.26 0.03 0.12 0.17 0.33 0.59 −1.85 0.34 1.82 2.15 3.18 4.04 

2 −0.13 0.07 0.03 0.11 0.15 0.28 −1.01 0.91 0.39 1.80 1.88 1.67 

3 0.13 0.09 0.04 −0.09 0.14 0.01 1.09 1.00 0.47 −1.17 1.76 0.05 

4 0.14 0.15 0.05 0.02 0.02 −0.12 1.10 1.81 0.60 0.31 0.23 −0.76 

Large 0.20 0.30 −0.03 −0.09 −0.08 −0.28 1.37 3.70 −0.40 −1.54 −1.00 −1.64 

βM diff t -statistic diff

Small 1.36 1.00 0.90 0.86 0.93 −0.43 32.37 29.82 30.58 38.28 38.00 −10.54 

2 1.48 1.10 0.96 0.93 0.99 −0.49 29.75 34.50 36.52 42.24 39.05 −9.22 

3 1.47 1.13 1.01 0.95 0.96 −0.50 30.10 34.87 36.64 33.70 40.38 −9.55 

4 1.52 1.21 1.05 0.98 0.93 −0.58 37.41 34.85 32.09 34.41 31.68 −11.62 

Large 1.48 1.12 0.99 0.90 0.89 −0.59 33.99 39.71 35.77 54.11 33.33 −13.80 

βSMB diff t -statistic diff

Small 1.14 0.94 0.88 0.93 1.17 0.03 13.84 12.64 11.36 16.59 25.39 0.44 

2 0.86 0.73 0.67 0.76 0.99 0.13 12.80 9.63 9.97 13.09 29.51 1.67 

3 0.51 0.43 0.45 0.44 0.75 0.24 5.75 5.36 7.03 6.04 22.30 2.61 

4 0.21 0.13 0.15 0.17 0.49 0.28 3.22 1.75 1.99 2.28 12.34 3.08 

Large −0.22 −0.25 −0.21 −0.21 0.02 0.25 −4.38 −6.40 −6.20 −6.64 0.72 4.24 

βHML diff t -statistic diff

Small 0.26 0.47 0.47 0.37 0.13 −0.13 3.63 7.26 8.17 6.96 2.78 −1.69 

2 0.17 0.37 0.39 0.35 0.01 −0.16 2.73 5.18 6.38 7.60 0.30 −1.96 

3 0.11 0.33 0.39 0.37 −0.03 −0.14 1.63 4.77 6.01 6.23 −0.99 −1.81 

4 0.15 0.30 0.34 0.27 −0.03 −0.19 2.43 4.03 4.57 4.38 −0.96 −2.31 

Large 0.04 0.15 0.14 0.10 −0.12 −0.16 0.76 2.72 3.65 2.54 −2.87 −2.12 

βPL diff t -statistic diff

Small 0.99 0.32 0.07 −0.12 −0.33 −1.33 10.53 6.92 1.72 −2.70 −6.26 −16.67 

2 0.97 0.36 0.00 −0.15 −0.43 −1.40 10.17 6.20 0.02 −4.45 −13.14 −13.89 

3 1.00 0.35 0.11 −0.19 −0.51 −1.51 16.58 7.85 2.42 −4.02 −14.18 −23.48 

4 1.06 0.41 0.12 −0.17 −0.57 −1.63 15.98 6.51 2.61 −4.22 −16.55 −25.02 

Large 0.96 0.52 0.11 −0.25 −0.59 −1.55 16.81 9.04 1.95 −7.33 −14.40 −22.95 

R 2 s ( e ) 

Small 0.91 0.92 0.92 0.92 0.91 2.44 1.69 1.59 1.59 2.09 

2 0.93 0.91 0.92 0.94 0.93 2.08 1.74 1.50 1.32 1.73 

3 0.89 0.90 0.90 0.91 0.92 2.42 1.78 1.58 1.54 1.80 

4 0.87 0.88 0.89 0.90 0.89 2.63 1.95 1.65 1.55 1.94 

Large 0.83 0.86 0.88 0.89 0.87 2.78 1.85 1.51 1.41 1.90 
longevity. Similarly, stocks that covary negatively with dE t 
would have higher expected returns. Therefore, if longevity 

risk explains momentum profits, we should observe that 

past winners (losers) have negative (positive) betas on 

the mimicking longevity portfolio PL . This implies that 

losers provide hedging against longevity risk, while win- 

ners hedge against mortality risk. In this section, we exam- 

ine the factor loadings of 25 size-momentum sorted port- 

folios on the longevity factor. We report the full-sample 

time-series regression results from the Fama–French model 

augmented with the longevity factor in Table 4 . We choose 

to report the results from Model (35) instead of Mod- 

els (33) and (34) , because Model (35) avoids the multi- 

collinearity problem and provides more reliable estimates 

of factor loadings. 

Inspecting the betas on PL gives rise to several obser- 

vations. First, within each size quintile, βPL monotonically 

decreases from the losers to the winners portfolio. This 

alleviates the concern about whether longevity risk is a 

characteristic ( Daniel and Titman, 1997 ). Notably, the load- 

ings on PL are significantly different between the past win- 

ners and losers portfolios in all size quintiles. In fact, the 
difference in βPL between winners and losers is slightly 

higher in the two largest size quintiles. Second, the losers 

always have positive betas on PL , while the winners al- 

ways have negative ones, which is consistent with the pre- 

diction above. Third, if we move from winners to losers 

quintiles, the magnitude of the betas of losers is much 

larger than that of winners. This is consistent with the em- 

pirical finding that the losers portfolio contributes more 

to the momentum profits than the winners portfolio (see, 

e.g. Jegadeesh and Titman, 2001 ). Fourth, overall, we see 

that 23 out of 25 portfolios have significant βPL at the 

1% level. 

Turning to other estimates in Table 4 , we see that 

most portfolios have very small alphas. Winners have 

lower loadings on the market factor and the value fac- 

tor, which suggests that these two factors are unlikely to 

explain the momentum profits. Winners do have slightly 

higher loadings on the size factor, while smaller stocks 

have higher exposure to the size factor. Overall, consis- 

tent with the literature, there is little evidence that the 

Fama–French three factors help to explain the momentum 

profits. 
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Table 5 

Robustness checks: different sample periods. 

This table presents full-sample Fama–MacBeth regressions using the excess returns of 25 portfolios sorted by size and momentum. Factors 

include the Fama–French three factors, the mimicking portfolio for consumption factor ( PC ), and the mimicking portfolio for longevity 

factor ( PL ). The factor betas, which are the independent variables in the regressions, are computed over two subperiods: 1963–1986 in 

Columns (1)–(4) and 1987–2014 in Columns (5)–(8), respectively. All coefficients are multiplied by 100. The t -statistics are in parentheses 

and adjusted for errors in variables, following Shanken (1992) . The adjusted R 2 follows Jagannathan and Wang (1996) . The 5th and 95th 

percentiles of the adjusted R 2 distribution from a bootstrap simulation of 10,0 0 0 times are reported in brackets. 

Subperiod: 1963–1986 Subperiod: 1987–2014 

(1) (2) (3) (4) (5) (6) (7) (8) 

γ 0 0.73 0.02 0.04 0.29 0.69 0.03 0.38 0.29 

(5.84) (0.21) (0.50) (0.54) (3.45) (0.38) (1.42) (0.49) 

γ M −0.25 0.65 0.17 0.09 0.81 0.45 

( −0.87) (2.20) (0.29) (0.31) (3.12) (0.76) 

γ SMB 0.30 0.19 0.12 0.14 

(1.63) (0.95) (0.67) (0.73) 

γ HML −0.55 0.75 −0.36 0.20 

( −2.07) (1.92) ( −1.38) (0.58) 

γ PC 0.94 0.53 0.87 0.86 

(4.76) (1.64) (3.63) (3.61) 

γ PL −0.89 −0.86 −0.82 −0.78 −0.73 −0.64 

( −5.11) ( −4.87) ( −3.32) ( −4.21) ( −3.84) ( −2.16) 

R 2 0.03 0.66 0.65 0.81 0.03 0.84 0.73 0.74 

[ −0.08, 0.32] [0.40, 0.82] [0.38, 0.78] [0.61, 0.89] [ −0.08, 0.53] [0.59, 0.90] [0.24, 0.88] [0.28, 0.89] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internet Appendix D presents the results from Models

(33) and (34) , which are qualitatively similar to those in

Table 4 . For example, losers (winners) have positive (nega-

tive) loadings on the longevity factor, and βPL monoton-

ically decreases from the losers to the winners portfo-

lio. Meanwhile, we find that winners have lower loadings

on the market factor and consumption factor than losers,

which means that these two factors cannot explain the

momentum returns. 

5. Robustness checks 

5.1. Subperiod analysis 

To further examine the persistence of the pricing power

of the longevity factor, we split the whole sample into

two subperiods, i.e., 1963–1986 and 1987–2014, and run

the full-sample Fama–MacBeth regressions for 25 portfo-

lios sorted by size and momentum. In Table 5 , Columns

(1)–(4) show the results from 1963–1986, while Columns

(5)–(8) show the results from the second subperiod, 1987–

2014. 

Examining results from Columns (1) and (5), we see

that the benchmark Fama–French model has difficulties in

explaining the momentums in both periods. The pricing er-

ror is 0.73% per month ( t -statistic = 5.84) in the first period

and 0.69% per month ( t -statistic = 3.45) in the second pe-

riod. Investigating Columns (2)–(4) and (6)–(8), we see that

longevity factor captures the momentum profits in both

periods, with a negative price of risk ranging from −0 . 89%

to −0 . 64% per month. The consumption-based three-factor

model and its two variants perform well. 

5.2. Alternative test assets 

Lewellen et al. (2010) suggest expanding the set of test

assets when some factors seem to explain nearly all of

the variation in returns. If longevity risk is an important
state variable, it should be priced in other assets as well.

Thus we use other portfolios to check the robustness of the

models in this section. 

Besides 25 size and momentum sorted portfolios, we

use 25 portfolios sorted by size and book-to-market (BM),

25 portfolios sorted by size and investment, and 25 portfo-

lios sorted by size and operating profitability. The data of

these 100 portfolios come from Kenneth French’s website.

The sample period is from July 1963 to December 2014.

Novy-Marx (2015) suggests that earnings momentum can

subsume the return momentum. To test whether longevity

risk is able to price the earnings momentum, we include

portfolios formed by size and earnings surprise as addi-

tional test assets. Specifically, we add 25 portfolios formed

by size and earnings surprise, where earnings surprise is

measured as the standardized unexpected earnings (SUE),

following Novy-Marx and Velikov (2016) . The sample pe-

riod for 25 size and earnings surprise sorted portfolios is

from January 1974 to December 2014. 

Table 6 reports the full-sample Fama–MacBeth regres-

sion results. For brevity, we report the results of test-

ing these portfolios jointly. Given data availability, we first

consider 100 portfolios (denoted as “100 portfolios”) over

July 1963 to December 2014 in Panel A and then all 125

portfolios (denoted as “125 portfolios”) over January 1974

to December 2014 in Panel B. Table 6 shows results similar

to those in Table 3 . The Fama–French model demonstrates

large pricing errors in Columns (1) and (5), while all other

models perform well (with insignificant pricing errors) in

Columns (2)–(4) and (6)–(8). Overall, we see that longevity

risk is negatively priced in the cross-section of various test

assets, while consumption risk is positively priced. 

5.3. Annual estimation 

Since consumption and longevity data are available only

annually, in Section 4.1 , we apply the weights of mimicking

portfolios obtained from annual regressions to the monthly
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Table 6 

Robustness checks: alternative test assets. 

This table presents Fama–MacBeth regressions using the excess returns of various test assets with full-sample regressions. Panel A 

tests 100 portfolios jointly, which include 25 size and book-to-market sorted portfolios, 25 size and investment sorted portfolios, 25 

size and operating profitability sorted portfolios, and 25 size and momentum sorted portfolios. The data of test assets are obtained 

from Kenneth French’s website. Panel B further adds a set of 25 portfolios formed by size and earnings surprise, where earnings 

surprise is measured as the standardized unexpected earnings (SUE). SUE follows Novy-Marx and Velikov (2016) . Factors include 

the Fama–French three factors, the mimicking portfolio for consumption factor ( PC ), and the mimicking portfolio for longevity factor 

( PL ). All coefficients are multiplied by 100. The t -statistics are in parentheses and adjusted for errors in variables, following Shanken 

(1992) . The adjusted R 2 follows Jagannathan and Wang (1996) . The 5th and 95th percentiles of the adjusted R 2 distribution from a 

bootstrap simulation of 10,0 0 0 times are reported in brackets. Due to data availability, the sample period for Panel A is from July 

1963 to December 2014; the sample period for Panel B is from January 1974 to December 2014. 

Panel A: 100 Portfolios Panel B: 125 Portfolios 

(1) (2) (3) (4) (5) (6) (7) (8) 

γ 0 0.55 −0.07 0.08 0.03 0.61 −0.05 0.19 0.02 

(6.17) ( −1.19) (0.30) (1.14) (5.31) ( −0.80) (0.63) (0.52) 

γ M 0.00 0.78 0.51 0.03 0.87 0.60 

(0.01) (3.75) (2.75) (0.12) (3.67) (2.81) 

γ SMB 0.18 0.21 0.22 0.26 

(1.44) (1.60) (1.54) (1.79) 

γ HML 0.26 0.41 0.26 0.43 

(2.12) (3.30) (1.77) (2.95) 

γ PC 0.94 0.89 0.98 0.88 

(6.41) (4.92) (5.57) (3.97) 

γ PL −0.82 −0.81 −0.79 −0.85 −0.82 −0.86 

( −6.38) ( −6.23) ( −6.19) ( −5.66) ( −5.30) ( −5.72) 

R 2 0.19 0.57 0.57 0.85 0.17 0.41 0.41 0.70 

[0.04, 0.46] [0.34, 0.75] [0.26, 0.72] [0.72, 0.88] [0.03, 0.43] [0.21, 0.62] [0.14, 0.60] [0.54, 0.77] 

 

frequency to compute the monthly mimicking portfolio re- 

turns and then run Fama–MacBeth regressions. In this sec- 

tion, we further evaluate the performances of various mod- 

els with the annual data directly, e.g., we use the annual 

mimicking portfolio returns. 

Table 7 reports the results from Fama–MacBeth regres- 

sions, using 25 size and momentum sorted portfolios in 

Panel A, 100 portfolios in Panel B, and 125 portfolios in 

Panel C. Again, the Fama–French three-factor model gen- 

erates large pricing errors in Columns (1), (5), and (9), 

while other models have insignificant intercepts. For exam- 

ple, Column (2) shows that the consumption-based three- 

factor model has a pricing error of –1.16% ( t -statistic = –

0.98) per year only, together with an R 2 of 0.85. Column 

(2) also shows that longevity risk has a price of –10.08% 

( t -statistic = –5.36) per year. Overall, the annual regression 

results are consistent with those from monthly regressions 

in Table 3 . This further validates the estimates of monthly 

mimicking portfolio returns. 

5.4. Alternative measure of longevity risk 

In this section, we consider another measure of 

longevity risk, e.g., measuring the longevity shocks from 

the mortality perspective. We use the PLC model ( Brouhns 

et al., 2002 ) to estimate the mortality risk. The PLC model 

is an extension of the Lee-Carter model ( Lee and Carter, 

1992 ). The simple PLC model performs very well and is 

widely used in practice. The PLC model assumes (1) there 

is a time-dependent latent process that governs the evolu- 

tion of the logarithm of the mortality rates, which is called 

the “mortality index”; and (2) the death number follows a 

Poisson distribution, as follows: 

D x,t ∼ P oisson (m x,t E x,t ) , (39) 
ln m x,t = a x + b x K t , (40) 

where D x,t is the number of deaths for age x in year t, E x,t is

the corresponding exposure, m x,t is the central death rate, 

a x and b x are two age-specific parameters, and K t is the 

mortality index. The model estimates this underlying mor- 

tality index, using a panel of mortality data across selected 

age groups. The parameters a x , b x , and K t are estimated it- 

eratively using the maximum likelihood method (see In- 

ternet Appendix F for more details). Then our alternative 

measure of longevity risk is the innovations in the mortal- 

ity index, i.e., the mortality risk: 

dK t = K t − K t−1 . (41) 

A negative shock to the mortality index implies a positive 

shock to longevity, so these two longevity measures have 

opposite signs of the price of risk. 

The mortality index is estimated via a full sample of 

data, over 1963–2014. It decreases over time, reflecting the 

general trend of rising life expectancy in this period. Em- 

pirically, we find that mortality risk ( dK t ) has a mean of 

–1.30 (corresponding to an increase of 0.14 years in life ex- 

pectancy), a standard deviation of 1.31, and a negative first- 

order autocorrelation of –0.13. ADF unit root tests show 

that mortality shocks ( dK t ) are stationary. We find that 

mortality risk is highly correlated with the longevity risk (a 

correlation of –0.99). Next, we construct a mimicking mor- 

tality portfolio, similar to the mimicking longevity portfo- 

lio in Eqs. (30) and (32) . The mimicking mortality portfolio 

has an annual return of 9.29% with a standard deviation 

of 12.28%. This mimicking mortality portfolio is highly cor- 

related with the momentum factor (a correlation of 0.87). 

Internet Appendix G shows more details about the mortal- 

ity risk and its mimicking portfolio returns. 
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Last, we replace the mimicking longevity portfolio with

the mimicking mortality portfolio and perform the Fama–

MacBeth two-stage regressions in Table 8 . Panel A tests 25

size and momentum sorted portfolios over July 1963 to De-

cember 2014; Panel B tests 100 portfolios over July 1963 to

December 2014; Panel C tests 125 portfolios over January

1974 to December 2014. Table 8 presents results similar to

those in Tables 3 and 6 . For example, we see the mortal-

ity factor is significantly priced in all cases, with a positive

price ranging from 0.7% to 0.87% per month. In fact, even

the magnitude of the price of mortality risk is very close to

the price of longevity shown in Tables 3 and 6 . Consump-

tion risk is also positively priced in all cases. Overall, we

see the consumption-based three-factor model, two-factor

model, and the Fama–French model augmented with the

mortality factor have insignificant pricing errors for those

test portfolios. The Fama–French model augmented with

the mortality factor performs best. 

5.5. International evidence: UK markets 

Momentum is observed in international markets and is

particularly strong in the UK markets ( Rouwenhorst, 1998;

Griffin et al., 2003; Chui et al., 2010; Fama and French,

2012; Asness et al., 2013; Bali et al., 2013 ). In this sec-

tion, we perform a similar analysis for the UK markets

as further robustness checks. We follow Gregory et al.

(2013) and use their datasets on UK stock markets, 22 which

include 6 size and book-to-market sorted portfolios, the

Fama–French three factors, the momentum factor, and 20

size and momentum sorted portfolios. To minimize the

impact of illiquidity and transaction costs associated with

tiny stocks, we focus on the largest four size groups of

their datasets, which cover Financial Times Stock Exchange

350 stocks only. The annual data of exposure and mortal-

ity rates are obtained from the Human Mortality Database.

As in the previous analyses, we measure longevity risk

as innovations of the weighted average period life ex-

pectancy or innovations of the mortality index. Then we

construct the mimicking portfolios for these two measures.

Due to data availability, the sample period is from January

1981 to December 2013. The annual consumption (includ-

ing nondurable goods and services consumption) and pop-

ulation (aged 16 and over) data are obtained from the Of-

fice for National Statistics. Due to the structural change of

consumption data in 1985 and data timing conventions,

we use the consumption growth data over 1986–2014 to

match with the returns of base assets over 1985–2013

when constructing the mimicking portfolio in Eq. (29) , but

we apply the same set of weights to compute the mim-

icking consumption portfolio returns over 1981–2013 in

Eq. (31) . 23 

Table 9 reports the Fama–MacBeth two-stage regres-

sions. Column (1) shows that the standard Fama–French

three-factor model generates a large pricing error of 0.90%

per month ( t -statistic = 2.04), together with a low R 2 of
22 UK stock market data are obtained from http://business-school.exeter. 

ac.uk/research/centres/xfi/research/famafrench/ . 
23 The results are similar if we restrict the sample period as 1985–2013. 

http://business-school.exeter.ac.uk/research/centres/xfi/research/famafrench/


242 Z. Chen and B. Yang / Journal of Financial Economics 133 (2019) 225–249 
T

a
b

le
 
8
 

R
o

b
u

st
n

e
ss
 
ch

e
ck

s:
 
a

lt
e

rn
a

ti
v

e
 
lo

n
g

e
v

it
y
 
m

e
a

su
re

. 

T
h

is
 
ta

b
le
 
p

re
se

n
ts
 
fu

ll
-s

a
m

p
le
 
Fa

m
a

–
M

a
cB

e
th
 
re

g
re

ss
io

n
s 

o
f 

v
a

ri
o

u
s 

te
st
 
p

o
rt

fo
li

o
s,
 
u

si
n

g
 
a

n
 
a

lt
e

rn
a

ti
v

e
 
m

e
a

su
re
 
o

f 
lo

n
g

e
v

it
y
 
fa

ct
o

r.
 
W

e
 
m

e
a

su
re
 
lo

n
g

e
v

it
y
 
ri

sk
 
a

s 
th

e
 
in

n
o

v
a

ti
o

n
s 

in
 
th

e
 
m

o
rt

a
li

ty
 
in

d
e

x
 
( d

K
 ),
 
i.

e
., 

th
e
 
m

o
rt

a
li

ty
 
ri

sk
. 

T
h

e
 
m

o
rt

a
li

ty
 
in

d
e

x
 
is
 
co

m
p

u
te

d
 
a

s 
in
 
B

ro
u

h
n

s 
e

t 
a

l.
 
(2

0
0

2
) .
 
Fa

ct
o

rs
 
in

cl
u

d
e
 
th

e
 
Fa

m
a

–
Fr

e
n

ch
 
th

re
e
 
fa

ct
o

rs
, 

th
e
 
m

im
ic

k
in

g
 
p

o
rt

fo
li

o
 
fo

r 
co

n
su

m
p

ti
o

n
 
fa

ct
o

r 
( P

C
 ),
 
a

n
d
 
th

e
 
m

im
ic

k
in

g
 
p

o
rt

fo
li

o
 

fo
r 

m
o

rt
a

li
ty
 
fa

ct
o

r 
( P

L )
. 

P
a

n
e

l 
A
 
te

st
s 

2
5
 
si

ze
 
a

n
d
 
m

o
m

e
n

tu
m
 
so

rt
e

d
 
p

o
rt

fo
li

o
s.
 
P

a
n

e
l 

B
 
te

st
s 

1
0

0
 
p

o
rt

fo
li

o
s 

jo
in

tl
y,
 
w

h
ic

h
 
in

cl
u

d
e
 
2

5
 
si

ze
 
a

n
d
 
b

o
o

k
-t

o
-m

a
rk

e
t 

so
rt

e
d
 

p
o

rt
fo

li
o

s,
 
2

5
 
si

ze
 
a

n
d
 
in

v
e

st
m

e
n

t 
so

rt
e

d
 

p
o

rt
fo

li
o

s,
 
2

5
 
si

ze
 
a

n
d
 
o

p
e

ra
ti

n
g
 
p

ro
fi

ta
b

il
it

y
 
so

rt
e

d
 
p

o
rt

fo
li

o
s,
 
a

n
d
 
2

5
 
si

ze
 
a

n
d
 
m

o
m

e
n

tu
m
 
so

rt
e

d
 
p

o
rt

fo
li

o
s.
 
T

h
e
 
d

a
ta
 
o

f 
te

st
 
a

ss
e

ts
 
a

re
 
o

b
ta

in
e

d
 
fr

o
m
 
K

e
n

n
e

th
 
Fr

e
n

ch
’s
 
w

e
b

si
te

. 
P

a
n

e
l 

C
 
fu

rt
h

e
r 

a
d

d
s 

a
 
se

t 
o

f 
2

5
 

p
o

rt
fo

li
o

s 
fo

rm
e

d
 
b

y
 
si

ze
 
a

n
d
 
e

a
rn

in
g

s 
su

rp
ri

se
, 

w
h

e
re
 
e

a
rn

in
g

s 
su

rp
ri

se
 
is
 
m

e
a

su
re

d
 
a

s 
th

e
 
st

a
n

d
a

rd
iz

e
d
 
u

n
e

x
p

e
ct

e
d
 
e

a
rn

in
g

s 
(S

U
E

).
 
S

U
E
 
fo

ll
o

w
s 

N
o

v
y

-M
a

rx
 
a

n
d
 
V

e
li

k
o

v
 
(2

0
1

6
) .
 
A

ll
 
co

e
ffi

ci
e

n
ts
 
a

re
 
m

u
lt

ip
li

e
d
 

b
y
 
1

0
0

. 
T

h
e
 
t -

st
a

ti
st

ic
s 

a
re
 
in
 
p

a
re

n
th

e
se

s 
a

n
d
 
a

d
ju

st
e

d
 
fo

r 
e

rr
o

rs
 
in
 
v

a
ri

a
b

le
s,
 
fo

ll
o

w
in

g
 
S

h
a

n
k

e
n
 
(1

9
9

2
) .
 
T

h
e
 
a

d
ju

st
e

d
 
R
 2
 

fo
ll

o
w

s 
Ja

g
a

n
n

a
th

a
n
 
a

n
d
 
W

a
n

g
 
(1

9
9

6
) .
 
T

h
e
 
5

th
 
a

n
d
 
9

5
th
 
p

e
rc

e
n

ti
le

s 
o

f 
th

e
 
a

d
ju

st
e

d
 
R
 2
 

d
is

tr
ib

u
ti

o
n
 
fr

o
m
 
a
 
b

o
o

ts
tr

a
p
 
si

m
u

la
ti

o
n
 
o

f 
1

0
,0
 
0
 
0
 
ti

m
e

s 
a

re
 
re

p
o

rt
e

d
 
in
 
b

ra
ck

e
ts

. 
D

u
e
 
to
 
d

a
ta
 
av

a
il

a
b

il
it

y,
 
th

e
 
sa

m
p

le
 
p

e
ri

o
d
 
fo

r 
P

a
n

e
ls
 
A
 
a

n
d
 
B
 
is
 
fr

o
m
 
Ju

ly
 
1

9
6

3
 
to
 
D

e
ce

m
b

e
r 

2
0

1
4

; 
th

e
 
sa

m
p

le
 
p

e
ri

o
d
 
fo

r 
P

a
n

e
l 

C
 
is
 
fr

o
m
 
Ja

n
u

a
ry
 
1

9
7

4
 
to
 
D

e
ce

m
b

e
r 

2
0

1
4

. 

P
a

n
e

l 
A

: 
2

5
 
P

o
rt

fo
li

o
s 

P
a

n
e

l 
B

: 
1

0
0
 
P

o
rt

fo
li

o
s 

P
a

n
e

l 
C

: 
1

2
5
 
P

o
rt

fo
li

o
s 

(1
) 

(2
) 

(3
) 

(4
) 

(5
) 

(6
) 

(7
) 

(8
) 

(9
) 

(1
0

) 
(1

1
) 

(1
2

) 

γ
0
 

0
.7

4
 

−0
.0

3
 

0
.2

8
 

−0
.0

2
 

0
.5

5
 

−0
.2

5
 

0
.1

7
 

0
.0

2
 

0
.6

1
 

−0
.1

9
 

0
.3

1
 

−0
.0

2
 

(5
.8

5
) 

( −
0

.3
5

) 
(1

.0
1

) 
( −

0
.6

6
) 

(6
.1

7
) 

( −
1.

6
6

) 
(0

.4
7

) 
(0

.6
2

) 
(5

.3
1

) 
( −

1.
1

2
) 

(0
.7

6
) 

( −
0

.3
3

) 

γ
M
 

−0
.0

9
 

0
.7

8
 

0
.5

9
 

0
.0

0
 

0
.9

6
 

0
.5

1
 

0
.0

3
 

1.
0

1
 

0
.6

3
 

( −
0

.4
2

) 
(3

.7
5

) 
(3

.2
0

) 
(0

.0
1

) 
(3

.6
7

) 
(2

.7
6

) 
(0

.1
2

) 
(3

.4
8

) 
(2

.9
2

) 

γ
SM

B
 

0
.2

4
 

0
.2

3
 

0
.1

8
 

0
.2

0
 

0
.2

2
 

0
.2

5
 

(1
.8

0
) 

(1
.7

7
) 

(1
.4

4
) 

(1
.5

6
) 

(1
.5

4
) 

(1
.7

5
) 

γ
H

M
L 

−0
.4

6
 

0
.4

0
 

0
.2

6
 

0
.4

2
 

0
.2

6
 

0
.4

5
 

( −
2

.3
9

) 
(2

.9
0

) 
(2

.1
2

) 
(3

.4
7

) 
(1

.7
7

) 
(3

.1
2

) 

γ
P

C
 

0
.8

5
 

0
.7

0
 

1.
0

9
 

0
.8

1
 

1.
0

9
 

0
.7

5
 

(4
.4

7
) 

(3
.0

0
) 

(5
.7

8
) 

(2
.6

8
) 

(4
.7

5
) 

(2
.1

8
) 

γ
P

L 
0

.8
3
 

0
.7

2
 

0
.7

9
 

0
.8

7
 

0
.7

0
 

0
.7

7
 

0
.8

7
 

0
.6

7
 

0
.8

4
 

(5
.8

3
) 

(4
.2

0
) 

(5
.9

4
) 

(5
.8

1
) 

(3
.5

5
) 

(5
.8

7
) 

(4
.9

9
) 

(2
.9

7
) 

(5
.4

9
) 

R
 2
 

0
.0

7
 

0
.6

4
 

0
.6

4
 

0
.8

5
 

0
.1

9
 

0
.3

9
 

0
.3

7
 

0
.7

8
 

0
.1

7
 

0
.2

5
 

0
.2

3
 

0
.6

1
 

[ −
0

.0
7,
 
0

.3
4

] 
[0

.3
5

, 
0

.8
2

] 
[0

.2
4

, 
0

.8
1

] 
[0

.7
0

, 
0

.9
1

] 
[0

.0
4

, 
0

.4
6

] 
[0

.1
3

, 
0

.6
7

] 
[0

.0
8

, 
0

.6
4

] 
[0

.6
2

, 
0

.8
4

] 
[0

.0
3

, 
0

.4
3

] 
[0

.0
6

, 
0

.5
3

] 
[0

.0
3

, 
0

.5
1

] 
[0

.4
4

, 
0

.7
2

] 

 

 

0.05. When we add the longevity risk factor to the Fama–

French model, Column (4) shows improved results. For 

example, we see an insignificant intercept of 0.15% per 

month ( t -statistic = 0.89), with an R 2 of 0.82. Longevity risk 

is significantly priced, with a price of risk of –0.95% per 

month, which is close to the estimate found in the US mar- 

kets. Adding the mortality risk factor to the Fama–French 

model, Column (7) shows similar results. Inspecting the 

consumption-based three-factor model and the two-factor 

model, we see they also perform well, e.g., insignificant 

pricing errors. Overall, Table 9 shows that the longevity 

risk factor also captures the large momentum profits in the 

UK markets. 

6. Inspecting the economic mechanism 

Previously, we empirically establish that losers and 

winners have different exposures to the longevity risk. 

That is, losers (winners) provide hedging against longevity 

(mortality) risks, which drives the pricing power of 

longevity risk over the momentum strategies. In this sec- 

tion, we further explore the economic mechanism behind 

this result. 

6.1. Equity durations 

Since losers (winners) provide hedging against 

longevity (mortality) risks, investors prefer to invest 

more in losers (winners) when there is a positive shock 

to longevity (mortality). Meanwhile, from a duration 

matching perspective, we know that investors are willing 

to invest more in assets with longer (shorter) durations 

when longevity (mortality) increases to minimize the 

rollover risk in the future. This suggests that the losers 

portfolio should have a longer equity duration than the 

winners portfolio. We test this economic mechanism in 

this section. 

Following Dechow et al. (2004) and Weber (2018) , we 

first compute the equity duration ( DUR ) for each stock at 

the quarterly frequency. This is essentially a Macaulay type 

of duration, computed as the weighted average time of fu- 

ture cash flows, as follows: 

DUR = 

∑ ∞ 

t=1 t ∗ CF t / (1 + r) t 

ME 
, 

where ME is the market equity at time 0, CF t is the net 

cash flow to equity holders at time t , and r is the ex-

pected return on equity. To simplify, we assume that we 

can forecast the stream of cash flows up to horizon T , and 

the remaining cash flows beyond T are to be a perpetuity. 

Thus, 

DUR = 

∑ T 
t=1 t ∗ CF t / ( 1 + r ) 

t 

ME 

+ 

(
T + 

1 + r 

r 

)
×

∑ ∞ 

s = T +1 CF s / ( 1 + r ) 
s 

ME 
. (42) 

To estimate duration, we need to forecast cash flows for 

the immediate T periods. Cash flows are computed from 

the accounting identity BE t = BE t−1 + E t − CF t , where BE t is 

the book equity at time t , and E t is the same period earn-

ings. Earnings can be computed from book equity and re- 

turn on equity (ROE). Dechow et al. (2004) assume that 
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Table 9 

Robustness checks: UK markets. 

This table presents Fama–MacBeth regressions using the excess returns of 20 portfolios sorted by size and momentum in the UK markets. 

Factors include the Fama–French three factors and the mimicking portfolio for longevity risk ( PL ), which is measured as innovations in 

the weighted average period life expectancy (denoted as dE ) in Columns (2)–(4) or innovations in mortality index (denoted as dK ) in 

Columns (5)–(7). Both measures are estimated over the full sample. The factor betas, which are the independent variables in the regressions, 

are computed over the full sample. All coefficients are multiplied by 100. The t -statistics are in parentheses and adjusted for errors in 

variables, following Shanken (1992) . The adjusted R 2 follows Jagannathan and Wang (1996) . The 5th and 95th percentiles of the adjusted 

R 2 distribution from a bootstrap simulation of 10,0 0 0 times are reported in brackets. The sample period is from January 1981 to December 

2013. 

dE dK 

(1) (2) (3) (4) (5) (6) (7) 

γ 0 0.90 0.09 −0.06 0.15 0.25 −0.14 0.11 

(2.04) (0.67) ( −0.32) (0.89) (0.64) ( −0.29) (0.25) 

γ M −0.30 0.60 0.50 0.43 0.52 

( −0.59) (2.20) (1.78) (0.91) (1.03) 

γ SMB 0.16 0.13 0.13 

(0.93) (0.76) (0.74) 

γ HML −0.24 −0.01 −0.03 

( −0.92) ( −0.04) ( −0.11) 

γ PC 1.77 1.84 1.59 1.95 

(3.73) (3.97) (2.69) (3.07) 

γ PL −0.87 −0.78 −0.95 0.66 0.91 0.79 

( −3.88) ( −3.77) ( −4.04) (1.56) (2.06) (1.72) 

R 2 0.05 0.87 0.86 0.82 0.72 0.71 0.22 

[ −0.12, 0.50] [0.59, 0.88] [0.55, 0.87] [0.47, 0.86] [0.19, 0.81] [0.18, 0.77] [ −0.08, 0.57] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

book equity grows at the rate of sales growth (SGR). They

further assume that SGR and ROE follow two separate

first-order autoregressive processes. To avoid the season-

ality issue, we estimate these two processes with the an-

nual Compustat data and then convert the estimates into

the quarterly frequency. Other data are from the quarterly

Compustat. We project the cash flows for the next T = 40

quarters and then compute durations from Eq. (42) (see In-

ternet Appendix H for details). The sample period is from

1972 to 2014. 

Next, we compute durations for 10 momentum

portfolios. Similar to Jegadeesh and Titman (2001) ,

at each month, we sort all common stocks from

NYSE/Amex/Nasdaq into 10 portfolios, based on their

cumulative returns over the previous 11 months. To avoid

microstructure noise, we exclude penny stocks. Next, we

match the duration estimates with the stock price data,

assuming a three-month reporting lag. Then we compute

the equally weighted duration for each portfolio. We

examine the portfolio durations during and after portfolio

formation. 

Fig. 4 presents the durations of winners and losers dur-

ing portfolio formation and the subsequent four quarters.

We see that during the portfolio formation period, losers

have a much longer duration (18.31 years) than winners

(15.99 years). In other words, the losers portfolio has a du-

ration of 2.33 years longer than the winners portfolio at

the beginning of the holding period. This is due to the cash

flow effect, because winners have higher dividend growth

in the recent past and the near future than losers. 24 Fig. 5

plots the quarterly dividend growth rates for winners and

losers four quarters before and after portfolio formation.

Clearly, winners experience much higher dividend growth
24 Chen (2017) finds similar results for value and growth stocks, i.e., 

growth stocks have lower cash flow growth rates. 
one year before and after the portfolio formation. Also,

Fig. 4 shows that the duration of losers (winners) de-

creases (increases) after the portfolio formation. The dura-

tion spread between losers and winners decreases to 0.76

years four quarters after portfolio formation. Fig. 5 also

shows that winners and losers have about the same div-

idend growth four quarters after portfolio formation. This

is consistent with the empirical finding that momentum

profits exist mainly within one year after portfolio forma-

tion. Hence, Fig. 4 confirms our prediction that losers have

longer equity durations and are preferred by investors who

are facing a positive longevity shock. As stocks with longer

durations have lower expected returns (see, e.g., Dechow

et al., 2004; Lettau and Wachter, 2007; Da, 2009; Weber,

2018 ), losers underperform. That is, losers (winners) pro-

vide hedging against longevity (mortality) risks through

the duration channel. 

We see that prior losers have longer durations.

However, this only implies that overall, losers have lower

expected returns than winners. We need an additional

mechanism to generate time-varying momentum profits,

especially the large losses. This is provided by an im-

portant feature of longevity risk, its time-varying nature.

As longevity risk varies over time, agents’ preferences for

longer or shorter duration stocks change as well. This cre-

ates time-varying momentum profits. For example, mo-

mentum profits should be low when there is a spike in un-

expected longevity. Let us examine the largest momentum

crash, which is in 2009. The life expectancy is 80.88, 80.93,

and 81.26 years in 20 07, 20 08, 20 09, respectively. This pat-

tern is also evident from the hospital admission rate of

the whole population. 25 Based on Hospital Statistics from

the American Hospital Association (2016), the hospital
25 The hospital admission rate is computed as total number of hospital 

admissions over the population. 
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Fig. 4. Postformation durations of winners and losers. This figure plots the portfolio durations of winners and losers during and after portfolio formation. 

At each month, we sort all common stocks (excluding penny stocks) from NYSE/Amex/Nasdaq into 10 portfolios, based on their cumulative returns over 

the previous 11 months, skipping one month. Winners (losers) are stocks in the highest (lowest) decile. We compute the individual stock duration at the 

quarterly frequency, as in Dechow et al. (2004) . We match the duration estimates with the stock price data, assuming a three-month reporting lag, and 

then compute equally weighted durations for each portfolio. The sample period is from 1972 to 2014. 
admission rate in 20 07, 20 08, and 20 09 is 12.30%, 12.32%, 

and 12.20%, respectively. Note that 2008 is the financial 

crisis year, and life expectancy did not increase much (only 

0.05 years, probably for economic reasons) in 2008 (the 

hospital admission rate increases slightly in 2008). But 

there is a big increase of life expectancy one year after the 

financial crisis (the hospital admission rate drops in 2009). 

It increases by 0.33 years in 2009, which maps very well 

the huge loss of momentum strategy in 2009. In fact, as 

shown in Fig. 1 , longevity risk closely follows the three 

largest momentum crashes over the sample period, i.e., in 

1975, 2003, and 2009. 26 Longevity risk is unusually high 

in these three years, coinciding with the largest losses of 

momentum strategy. 

6.2. Frequency domain analysis: short-run and long-run 

consumption risks 

We first provide some statistical evidence from the fre- 

quency domain analysis. 27 Fig. 6 plots the spectral den- 

sity of the longevity risk ( dE ), momentum factor, the 

Fama–French three factors, and the cross-spectrum of the 

longevity risk and the momentum factor. Panel (a) shows 

that the longevity risk has a very low frequency com- 

ponent with a frequency of 0.24 (a period of 26 years) 

and another business cycle frequency component with a 

frequency of 2.30 ∼ 2.78 (a period of 2.26 ∼ 2.74 years). 28 
26 There is a slight misalignment in 2003 due to the data timing conven- 

tions, e.g., longevity risk is computed at the mid-year while stock returns 

are computed over a year. 
27 Recently, Dew-Becker and Giglio (2016) applied frequency analysis to 

derive the frequency-specific risk prices for leading models. 
28 The low frequency component is likely to be driven by changes in the 

birth rate at the generational frequency, e.g., baby booms. 
Panel (b) shows that the momentum factor also has a busi- 

ness cycle component with a frequency of 2.05 ∼ 2.30 (a 

period of 2.74 ∼ 3.06 years). Panels (a) and (b) suggest that 

the longevity risk and the momentum factor share a com- 

mon business cycle component with a frequency of 2.30 (a 

period of 2.74 years), which is exactly shown in the cross- 

spectrum graph in Panel (c). Inspecting the Fama–French 

three factors, we see that the market factor has a busi- 

ness cycle component with a frequency of 1.81 (a period 

of 3.47 years); the size factor has a low frequency compo- 

nent with a frequency of 0.48 (a period of 13 years); the 

value factor has a business cycle component with a fre- 

quency of 1.33 (a period of 4.73 years). Frequency domain 

analysis provides us another way to understand the suc- 

cess of longevity risk in explaining the momentum prof- 

its: they have a common frequency component, which is 

at the business cycle frequency. This is consistent with the 

earlier findings that momentum appears to be procycli- 

cal ( Chordia and Shivakumar, 2002; Cooper and Hameed, 

2004 ). Frequency domain analysis also illustrates the in- 

ability of the Fama–French three factors to explain the mo- 

mentum profits, as they do not have a common frequency 

component. 

Frequency domain analysis shows that although 

longevity risk has a long-run component and a short-run 

component, only the short-run component is shared with 

the momentum factor. From the consumption risk per- 

spective, this implies that only the short-run consumption 

risk matters for momentum factor. To further test this 

implication, we estimate the short-run and long-run con- 

sumption risks, following Bansal et al. (2016) and Li and 

Zhang (2017) . Specifically, we regress consumption growth 

at year t + 1 against the natural logarithm of aggregate 

dividend-price ratio and real risk-free rate at year t to 

compute the expected consumption growth rate. Next, we 
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Fig. 5. Dividend growth rates of winners and losers around portfolio formation. This figure plots quarterly dividend growth rates of winners and losers four 

quarters before and four quarters after portfolio formation. At each month, we sort all common stocks (excluding penny stocks) from NYSE/Amex/Nasdaq 

into 10 portfolios, based on their cumulative returns over the previous 11 months, skipping one month. Winners (losers) are stocks in the highest (lowest) 

decile. We compute quarterly dividend growth rate of each stock and then compute equally weighted dividend growth rate for each portfolio. The sample 

period is from 1972 to 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fit an AR(1) process to the expected consumption growth.

We then recover the short-run and long-run consumption

risks. The annual data of aggregate dividend-price ratio

and real risk-free rate are from Robert Shiller’s website. 29

The unfiltered consumption data are from Kroencke (2017) .

The sample period is 1964–2014. 

Fig. 7 plots the estimated short-run consumption risk

and longevity risk. Clearly, longevity risk and the short-run

consumption risk move in opposite directions. Indeed, we

find that longevity risk is negatively associated with the

short-run consumption risk, with a correlation coefficient

of –0.27, while it is positively related to the long-run con-

sumption risk, with a correlation coefficient of 0.11. Since

both short-run and long-run risks are positively priced un-

der the standard assumptions in Bansal and Yaron (2004) ,

this further confirms the finding from frequency domain

analysis that longevity risk contains short-run consump-

tion risks, which explain the momentum factor, not the

long-run component. 30 

6.3. Decomposing longevity risk 

We previously showed that longevity can affect time

preferences directly via the time-preference discount rate
29 Available at http://www.econ.yale.edu/ ∼shiller/data/chapt26.xlsx . 
30 Li and Zhang (2017) also find that only short-run consumption risk 

explains the momentum profits. 

 

 

 

channel or indirectly through the income inequality chan-

nel. One might wonder which channel is more important.

To differentiate these two channels, we project longevity

risk on income inequality risk to compute the compo-

nent predicted by income inequality risk and the resid-

uals. Then we construct the mimicking portfolio for the

residuals as in Eqs. (30) and (32) (denoted as resid , which

captures the direct channel). We compute the difference

between the mimicking longevity portfolio and mimicking

residual portfolio as the income inequality risk (denoted as

II , the indirect channel). Last, we perform Fama–MacBeth

regressions to test asset pricing power of these two

components. 

We use income data from the US Census Bureau (Ta-

ble A-2: Selected measures of household income disper-

sion). We first compute the annual income growth rates for

the 90th and 50th income percentiles and measure income

growth dispersion as the difference between these two

growth rates. Then, income inequality risk is defined as the

first-order difference of income growth dispersion. We use

full-sample estimation in Fama–MacBeth regressions. We

use 125 test portfolios, including 25 size-momentum port-

folios, 25 size-BM portfolios, 25 size-investment portfolios,

25 size-profitability portfolios, and 25 size-SUE portfolios.

The sample period is 1974–2014. 

Consistent with the literature, we find that longevity

decreases with the income inequality, with a correla-

tion of –0.18. Table 10 reports results from the Fama–

MacBeth regressions, using the Fama–French three-factor

http://www.econ.yale.edu/~shiller/data/chapt26.xlsx
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Fig. 6. Spectral analysis. Fig. (a), (b), (d), (e), and (f) plot the spectral density of longevity risk ( dE ), momentum factor ( MOM ), market return ( MKT ), size 

factor ( SMB ), and value factor ( HML ), respectively, against frequency. Fig. (c) plots the cross-spectrum of longevity risk ( dE ) and momentum factor ( MOM ) 

against frequency. 
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Fig. 7. Annual short-run consumption risk and longevity risk. This figure plots the annual short-run consumption risk (shown in the left axis) and innova- 

tions in the weighted average period life expectancy ( dE , shown in the right axis), i.e., the longevity risk. The short-run consumption risk is estimated as 

in Bansal et al. (2016) and Li and Zhang (2017) . The sample period is 1964–2014. 

Table 10 

Decomposing longevity risk: the role of income inequality. 

This table presents Fama–MacBeth regressions using the excess returns of 125 portfolios, including 25 size-momentum port- 

folios, 25 size-BM portfolios, 25 size-investment portfolios, 25 size-profitability portfolios, and 25 size-SUE portfolios. Factors 

include the Fama–French three factors, the mimicking consumption portfolio, the mimicking longevity portfolio, the mimicking 

portfolio for longevity risk predicted by income inequality (denoted as II ), and the mimicking portfolio for longevity risk not 

captured by the income inequality (denoted as resid ). The factor betas, which are the independent variables in the regressions, 

are computed over the full sample. All coefficients are multiplied by 100. The t -statistics are in parentheses and adjusted 

for errors in variables, following Shanken (1992) . The adjusted R 2 follows Jagannathan and Wang (1996) . The 5th and 95th 

percentiles of the adjusted R 2 distribution from a bootstrap simulation of 10,0 0 0 times are reported in brackets. The sample 

period is from January 1974 to December 2014. 

FF Three-factor model Two-factor model FF + Longevity 

(1) (2) (3) (4) (5) (6) (7) 

γ 0 0.61 −0.05 −0.03 0.19 −0.15 0.02 0.03 

(5.31) ( −0.80) ( −0.61) (0.63) ( −0.71) (0.52) (1.43) 

γ M 0.03 0.87 0.67 0.60 0.58 

(0.12) (3.67) (3.09) (2.81) (2.74) 

γ SMB 0.22 0.26 0.28 

(1.54) (1.79) (1.94) 

γ HML 0.26 0.43 0.39 

(1.77) (2.95) (2.78) 

γ PC 0.98 1.11 0.88 1.13 

(5.57) (6.55) (3.97) (6.56) 

γ PL −0.85 −0.82 −0.86 

( −5.66) ( −5.30) ( −5.72) 

γ II −0.38 −0.36 −0.20 

( −3.57) ( −3.17) ( −2.09) 

γ resid −0.42 −0.45 −0.71 

( −2.15) ( −2.21) ( −3.74) 

R 2 0.17 0.41 0.68 0.41 0.67 0.70 0.71 

[0.03, 0.43] [0.21, 0.62] [0.53, 0.76] [0.14, 0.60] [0.46, 0.74] [0.54, 0.77] [0.56, 0.79] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model, the consumption-based three-factor model, the

two-factor model, and the Fama–French model augmented

with longevity factor. Columns (3), (5), and (7) shows that

both income inequality component and the residual com-

ponent are significantly priced with a negative price. Tak-

ing the consumption-based three-factor model as an exam-

ple, income inequality component has a price of –0.38%

( t -statistic = –3.57) per month, while the residual compo-

nent has a price of –0.42% ( t -statistic = –2.15) per month.

The magnitudes of these two components are about the

same in Columns (3) and (5), but the residual component

seems to be much larger than the income inequality com-

ponent in Column (7). In sum, both channels show a siz-

able price of risk. 
6.4. Investigating the pricing kernel 

Jegadeesh and Titman (1993) decompose the poten-

tial sources of momentum profits into three parts (see

Eq. (3) on page 72): (1) the cross-sectional dispersion in

unconditional expected returns, (2) the time-serial covari-

ance of pricing factors, and (3) the average serial covari-

ance of the idiosyncratic components of stock returns. The

first two components imply risk-based explanations for

momentum profits, while the last source implies market

inefficiency. Jegadeesh and Titman (1993, 2002) show that

the first component is not the reason for momentum prof-

its, as stocks have similar unconditional returns. Jegadeesh

and Titman (1993) further note that “the serial covariance
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of 6-month returns of the equally weighted index is nega- 

tive (–0.0028)” (see page 73), which implies that the sec- 

ond term cannot contribute to the momentum profits ei- 

ther. That is, momentum profits cannot be explained by 

the market factor. Their finding is not surprising, given the 

poor performance of CAPM. 

Since we suggest that longevity risk contributes to most 

momentum profits, we need to show that the pricing fac- 

tors in our model are indeed positively serially correlated. 

To test this hypothesis, we first aggregate the multiple 

pricing factors into one factor, i.e., the pricing kernel. Let 

R i,t+1 be the return of asset i at time t + 1 , which satisfies 

a k -factor linear asset pricing model, as follows: 

E [ R i,t+1 ] = α + λ′ 
−1 
f 

Cov ( f t+1 , R i,t+1 ) (43) 

= α + φ′ Cov ( f t+1 , R i,t+1 ) , 

where f are pricing factors, λ are prices of factor risks, 
f 

is the covariance matrix of factors f , and φ = 
−1 
f 

λ. Then 

we can define the pricing kernel as 

= 

1 

α
[1 − φ′ ( f t+1 − μ f )] , (44) 

where μf are unconditional means of the factors. 

We use Eq. (44) to construct a pricing kernel from 

the three-factor model, two-factor model, and the Fama–

French model augmented with the longevity factor. Since 

the momentum portfolios are constructed over previ- 

ous 11-month returns, we use the annual factor data 

to construct the time series of the annual pricing ker- 

nel. We find that the pricing kernel constructed from the 

consumption-based three-factor model, two-factor model, 

and the Fama–French model augmented with the longevity 

factor is indeed positively serially correlated, with a cor- 

relation coefficient of 0.14, 0.15, and 0.11, respectively. 

For comparison, we also compute the annual pricing ker- 

nel implied by CAPM or the Fama–French three-factor 

model. We find that the pricing kernels from CAPM and 

the Fama–French three-factor model are negatively serially 

correlated, with a correlation coefficient of –0.04 and –

0.04, respectively. This explains both the failures of CAPM 

and the Fama–French three-factor model and the suc- 

cess of longevity risk in capturing the momentum prof- 

its. Longevity risk does represent systematic risk underly- 

ing the momentum strategy. 

7. Conclusion 

Time-preference shocks affect agents’ preferences for 

assets with different durations, which represent a system- 

atic risk on agents’ intertemporal consumption and in- 

vestment choices. Unexpected shocks to life expectancy 

are important sources of time-preference shocks. For ex- 

ample, longevity can affect time preferences directly via 

the time-preference discount rate or indirectly through the 

income inequality channel. We model longevity risk as 

a stochastic time-preference shock process in the recur- 

sive preferences setting. We show that the consumption- 

based model implies a linear three-factor model, which 

includes the longevity risk (time-preference shocks), the 

consumption growth rate, and the market portfolio, where 

longevity is negatively priced. Empirically, we find that 
the consumption-based three-factor model and its two 

variants, i.e., the two-factor model and the Fama–French 

three-factor model augmented with the longevity risk, are 

able to explain the cross-sectional return variations gen- 

erated by many well-known portfolios. Notably, we find 

that longevity risk closely tracks the momentum profits. 

We find that losers have lower dividend growth and hence 

longer durations than winners. Thus, the previous losers 

(winners) provide hedging against the longevity (mortal- 

ity) risk and consequently have lower (higher) expected re- 

turns. In addition, agents’ preferences for longer or shorter 

duration stocks change over time as longevity risk varies. 

We find that longevity risk explains most momentum prof- 

its, including the large momentum crashes observed in the 

data. We find that longevity risk shares a common busi- 

ness cycle component with the momentum factor. This 

short-run risk component explains the momentum factor. 

Our cross-sectional results highlight the importance of in- 

cluding time-preference shocks in asset pricing, as demon- 

strated in Albuquerque et al. (2016) . 
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