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We decompose aggregate market variance into an average correlation component and an
average variance component. Only the latter commands a negative price of risk in the
cross section of portfolios sorted by idiosyncratic volatility. Portfolios with high (low)
idiosyncratic volatility relative to the Fama-French (1993) model have positive (negative)
exposures to innovations in average stock variance and therefore lower (higher) expected
returns. These two findings explain the idiosyncratic volatility puzzle of Ang et al. (2006,
2009). The factor related to innovations in average variance also reduces the pricing errors
of book-to-market and momentum portfolios relative to the Fama-French (1993) model.
(JEL G12)

In an influential study, Ang, Hodrick, Xing, and Zhang (2006, 2009; AHXZ
hereafter) show that stocks with high idiosyncratic risk, defined as the
standard deviation of the residuals from the Fama-French (1993) model, have
anomalously low future returns.! This finding is puzzling in light of theories
that suggest that idiosyncratic volatility (denoted as /V') should be irrelevant
or positively related to expected returns.”

If a factor is missing from the Fama-French model, the sensitivity of stocks
to the missing factor times the movement in the missing factor will show up in
the residuals of the model. Firms with greater sensitivities to the missing factor

We thank Geert Bekaert (editor), two anonymous referees, and seminar participants at the Norwegian Business
School (BI) and Texas A&M University for many valuable comments and suggestions. Chen acknowledges
financial support from a Nanyang Technological University Start-up Grant. Send correspondence to Ralitsa
Petkova, Finance Department, Krannert School of Management, Purdue University, 403 W. State Street, West
Lafayette, IN 47907; telephone: (216) 235-0558. E-mail: rpetkova@purdue.edu.

Some articles challenge this result from an empirical methodology perspective. For example, Fu (2009) argues
that the estimate in AHXZ (2006) is not a good proxy for expected idiosyncratic risk and shows that conditional
idiosyncratic volatility computed from an EGARCH model is positively related to expected returns. Both Fu
(2009) and Huang et al. (2010) demonstrate that return reversals from stocks with high idiosyncratic risk in the
last month lead to AHXZ’s results. Bali and Cakici (2008) show that the idiosyncratic risk puzzle is not robust
for different portfolio weighting schemes and sample data choices. However, Barinov (2010) points out a sample
selection bias in Bali and Cakici (2008).

The CAPM suggests that idiosyncratic risk should not be priced, but Merton (1987) argues that if investors
cannot diversify properly, then idiosyncratic risk should be rewarded with higher expected returns.
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should therefore have larger idiosyncratic volatilities relative to the Fama-
French model, everything else being equal. AHXZ follow this argument and,
motivated by the Intertemporal Capital Asset Pricing Model (ICAPM), include
aggregate market variance as a potential missing factor in the Fama-French
model. They find that market variance is a significant cross-sectional asset
pricing factor but the spread in the market variance loadings between high and
low I'V stocks cannot fully explain the IV puzzle. In this article, we address
an important but still unanswered question: Is there a risk-based explanation
behind the low average returns of stocks with high idiosyncratic volatility?

A risk-based explanation behind the IV puzzle needs to: 1) identify a risk
factor missing from the Fama-French model and show that exposure to this risk
factor is priced; and 2) show that the loadings of high 7'V stocks relative to the
missing factor differ from those of low IV stocks, and the spread in loadings
is large enough to explain the difference in average returns between high and
low 1V stocks. We provide evidence consistent with both of these objectives.

First, motivated by the intertemporal models of Campbell (1993, 1996) and
Chen (2003), we focus on state variables that govern market variance.? To do
that, we decompose aggregate market variance as market variance & average
stock variance * average stock correlation. Therefore, exposure to aggregate
market variance has two components as well: exposure to average variance risk
and exposure to correlation risk. We estimate separately the loadings to average
variance and average correlation of portfolios sorted by size and / V. For the
period from July 1966 to December 2009, only exposure to average variance
(and not correlation) is priced, in addition to the Fama-French factors, and its
price of risk is negative.

Second, we show that portfolios with high (low) IV have positive (negative)
loadings with respect to innovations in average stock variance and thus lower
(higher) expected returns. This difference in the loadings between high and low
1V stocks, combined with the negative premium for average stock variance,
completely explains the average return difference between high and low IV
assets. For example, among small stocks, the realized Fama-French alpha of the
high-minus-low /V portfolio is —1.79% per month. This alpha is completely
explained by the combined effect of a negative average variance premium of
7.7% per month and a difference in the average variance loadings of high (low)
1V stocks of 0.24 (—7.7%%0.24=—1.85%). Similar results hold for medium
and large stocks.

Finally, we show that in the presence of loadings with respect to innovations
in average variance, individual idiosyncratic risk does not affect expected
returns. This result holds for a set of portfolios sorted by IV and the

These models differ from asset pricing models that use important macroeconomic variables as sources of risk.
Instead, Campbell (1993) and Chen (2003) propose that state variables that predict investment opportunities
in the time series should be used as risk factors in the cross section. The advantage of this approach is that
it provides a link between time-series and cross-sectional return predictability. Variables that indicate that
investment opportunities deteriorate should command negative prices of risk.

2746

210z ‘8z snbny uo A1sleAlun ealbojouyos | BuelueN e /6.10°seulinolploixos//:dny wouy pepeojumoq


http://rfs.oxfordjournals.org/

Does Idiosyncratic Volatility Proxy for Risk Exposure?

cross section of individual stock returns. It is robust to the inclusion of other
stock characteristics such as size, book-to-market, and past returns.

The main message of this article is that although aggregate market variance
is priced cross-sectionally (as AHXZ find), only one component of it (average
variance) is priced in the cross section of portfolios sorted by / V. Exposure to
average correlation is not an important determinant of the average returns of
these portfolios. Because of the confounding effect of correlations in aggregate
market variance, AHXZ find that loadings with respect to aggregate market
variance cannot explain the 7V puzzle. The novel result in our article is that
once the effects of average variance and average correlation on stock returns are
disentangled, the role of average variance in explaining the 7V puzzle clearly
stands out. To the best of our knowledge, this has not been documented before.

Why is the correlation component of total market variance not priced in the
cross section of returns, while the variance component is priced? We offer two
explanations. First, Campbell (1993) shows that any variable that forecasts
future market returns or volatility is a good candidate state variable for cross-
sectional pricing. We find that average variance predicts lower future market
returns and higher future market variance. Therefore, high average variance
worsens the investor’s risk-return trade-off and commands a risk premium.
Average correlation, on the other hand, predicts higher future market returns
and higher future market variance. Therefore, the overall effect of average
correlation on the risk-return trade-off is ambiguous.

Second, we find that high (low) IV stocks have high (low) research and
development expenditure (R&D), which is considered to be an indicator for
the presence of real options. Therefore, a large portion of the value of high
1V stocks may come from their individual real options. Recent evidence
suggests that individual options are not significantly exposed to correlation
risk. Namely, Driessen et al. (2009) find that individual option returns are
much less dependent on correlation shocks compared to index option returns.
Intuitively, index options are expensive and earn low returns because they
offer a valuable hedge against correlation increases and insure against the risk
of a loss in diversification benefits. The same does not hold for individual
options. Therefore, our finding that average correlation risk is not priced in
the cross section of assets sorted by IV is consistent with Driessen et al.
(2009).

We also examine why the loadings of high I V' stocks with respect to average
variance are positive, conditional on their Fama-French betas. This indicates
that in times of high volatility, high 7V stocks perform better than predicted by
the Fama-French model. Given that these stocks have high R&D expenditures,
our results are consistent with predictions from the real options literature.
Theoretical models from this literature predict that the value of a real option
should be increasing in the volatility of the underlying asset. Therefore, the
value of a firm with a lot of real options should be less negatively affected by
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increasing volatility, both idiosyncratic and systematic. This makes high 1V
stocks good hedges for times of increasing market-wide variance.

To provide an economic interpretation of average variance as a pricing factor,
we relate it to aggregate liquidity, the variance of consumption growth, and
the aggregate market-to-book ratio, which is a measure of aggregate growth
options. We show that the component of average variance projected on these
three variables has the same pricing implications as total average variance.

In summary, our results contribute to the understanding of the IV puzzle
documented by AHXZ (2006). AHXZ (2009) show that their earlier findings
are robust, and they provide supporting out-of-sample evidence from 23
different countries. After documenting that high-minus-low IV portfolios
comove across countries, AHXZ (2009) conclude that a missing risk factor
is the most likely explanation for the IV puzzle. Our article contributes to the
literature by directly examining the hypothesis that exposure to a risk factor,
which is missing from the Fama-French model, explains the IV effect. We
provide empirical support for this hypothesis. We find that high 7V assets
have low expected returns since they provide hedging opportunities relative
to increases in average stock variance. When average stock variance goes up,
investment opportunities deteriorate. Therefore, investors are willing to pay
an insurance premium for high 7V stocks since their payoff is less negative
when average return variance is large.

The rest of this article is organized as follows. Section 1 discusses the relation
between idiosyncratic risk defined relative to the Fama-French model and
exposure to a missing risk factor. It argues that the factors missing from the
Fama-French model are the two components of market variance. In Section 2,
we compute the two separate components of aggregate market variance, average
variance and average correlation, and examine their time-series properties.
Section 3 is the main section of the article. It contains cross-sectional regressions
that estimate factor prices of risk for average variance and correlation using
portfolios sorted by size and /V. Section 4 examines the performance of the
average variance factor in the cross section of alternative test assets. Section 5
explores the characteristics of stocks that have different loadings with respect
to average variance and provides an economic interpretation of the average
variance factor. Section 6 provides a comparison between several alternative
explanations of the I V puzzle and ours, and Section 7 concludes. The Appendix
contains some further extensions and robustness checks.*

1. The Fama-French Model Augmented with Average Variance and Average

4

Correlation

1.1 Idiosyncratic volatility as a proxy for an exposure to a missing factor
The following analysis summarizes the relation between idiosyncratic volatility

relative to the Fama-French model and loadings with respect to a missing factor.

All appendices are available online at http://www.sfsrfs.org.
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The analysis follows MacKinlay and Pastor (2000). Let R;; denote the excess
return on asset i in period ¢. The linear relation between the asset returns and
the risk factors is

R,’t=Ol,'+ﬁ,'RMt+hl'HML[+S,'SMBt+8”, (l)

where Ry, HM L, and SM B are the excess return on the market portfolio, the
value factor, and the size factor, respectively, and «; is the mispricing of asset
i.

If exact pricing does not hold due to a missing factor, then «; is not zero.
In that case, «; can be shown to be related to the variance of ¢;;, using the
optimal orthogonal portfolio op.> It is optimal since it can be combined with
the factor portfolios to form the tangency portfolio. It is also orthogonal to the
factor portfolios.

Since op is optimal, when it is included in the Fama-French model, the
intercept «; disappears. In addition, the orthogonality property of op preserves
the coefficient 8, i, and s unchanged. Due to these properties, op can be thought
of as an omitted factor in a linear factor model. When the omitted factor is added
to the model, the following relation holds:

Rt =Bopi Rops + Bi Ry +hi HM Ly +5; SM By +u;;, ()

where B,p; is the sensitivity to the omitted factor op, and R, is the return
on portfolio op. The link between B,,; and the variance of ¢;; results from
comparing Equations (1) and (2). If we equate the variance of &;; with the
variance of B,,; R,p; +u;;, we have

Var(ei)=Ba,; Var(Rop)+Var(uz). 3)

Equation (3) reveals that if an asset has a significant mispricing relative to the
Fama-French model, then there is a positive relation between the idiosyncratic
volatility relative to the model, Var(e;;), and the asset’s exposure to the
missing factor, ﬂgpi. Therefore, the measure of idiosyncratic volatility from
the misspecified model in Equation (1) depends on the asset’s beta with respect
to the missing factor and the true idiosyncratic volatility, Var(u;,), relative to
the correct model in Equation (2).

MacKinlay and Pastor (2000) point out that if «; is related to a missing factor,
then there should be a positive relation between this mispricing and the residual
variance. They state that in the absence of such a relation, mispriced securities
could be collected to form asymptotic arbitrage opportunities. Using the fact
that o; = B,,i E(R,)), we can further expand Equation (3):

Var(e=—"1— v 4

ar(ein)= g+ Vartun), 4)

where S*(R,,) is the squared Sharpe ratio of the missing factor. Equation
(4) reveals that when a factor is missing from the Fama-French model,

5 See MacKinlay (1995) for a more detailed discussion on the optimal orthogonal portfolio.
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the resulting mispricing & should be positively correlated with the residual
variance Var(g;;).

Therefore, if an asset has a significant alpha relative to the Fama-French
model, then AHXZ’s measure of /V may proxy for the asset’s exposure to
a missing risk factor. We find that for every month in our sample, a large
percentage of stocks have significant alphas relative to the Fama-French model
during the period when it is used to compute their idiosyncratic volatilities.

The sensitivity with respect to the omitted factor is squared in Equation (3).
This might suggest that only the magnitude of the loading is important, but that
is misleading. The sign of the loading is crucial. AHXZ show that high IV
portfolios have negative alphas with respect to the Fama-French model after
portfolio formation, while the alphas of low IV portfolios are positive. This
suggests that the model overestimates the expected returns of high 7'V stocks,
and underestimates them for their low 'V counterparts. If a missing factor is to
account for the 1V puzzle, then the product of the price of risk of the missing
factor and the exposure to this factor should account for the mispricing for
both high and low 1V stocks. Therefore, their betas with respect to the missing
factor must have opposite signs.

1.2 What is the factor missing from the Fama-French model?

In the discrete-time version of the ICAPM, expected returns are linear functions
of covariances with state variables that describe investment opportunities.
Campbell (1993) and Chen (2003) develop asset pricing models that specify
the identity of the ICAPM state variables. Namely, they show that expected
returns depend on covariances with variables that predict the market return
and variance. The literature on the time series of market variance shows that
aggregate variance has two separate components, one related to stock variances
and the other related to stock correlations. We combine these insights from
the market variance and the asset pricing literature and conjecture that the
factors missing from the Fama-French model are the two components of market
variance.

The two components of market variance behave differently. Driessen et al.
(2009) point out that there is a priced risk factor in index-based variance, like
VIX, thatis not present in individual stock variance. This factor is the stochastic
correlation between stocks. Therefore, the VIX index, and more generally,
total market variance, can be decomposed into average variance and average
correlation. Driessen et al. (2009) show that individual options are not exposed
to correlation risk, while index options are. Pollet and Wilson (2010) show that
average correlation predicts the market return, while average variance does not.

Motivated by the findings of Driessen et al. (2009) and Pollet and Wilson
(2010), we decompose market variance into an average variance and an average
correlation component. It is interesting to analyze the pricing abilities of both
components not only in options but also in the cross section of equity returns.
We examine to what extent cross-sectional differences in expected returns
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for portfolios sorted by IV are driven by differences in exposure to average
variance or by differences in exposure to average correlation.

Let M denote the value-weighted market portfolio of all stocks where w;; is
the weight of asset i at time ¢ in the market. Then, the variance of the market
return 1S

N N
Vi=Y > wiw;Corr(Rir, Rj)SD(Ri;)SD(R ), ©)
i=1 j=1
where N stands for the number of stocks in the market portfolio. We employ
a useful approximation to decompose total market variance into an average
variance and an average correlation component. The approximation states that
market variance is the product of the average variance of all individual stocks
and the average correlation between all pairs of stocks. We define AV, to be
the cross-sectional average variance for the N stocks in the market portfolio at
time ¢:

N
AVi=) wiV(Ry), 6)

i=1
and AC, to be the cross-sectional average correlation between all pairs of stocks

at time ¢:
N N

AC=> "> wiw;,Corr(Rip, Rjy). 7
i=1 j=1
Assuming that all stocks have the same individual variances, expression (5)
simplifies to
Vi=AV,AC,. (8)

The intuition from Campbell (1993) and Chen (2003) suggests that investors
would want to hedge against changes in average variance and average
correlation because they affect market variance. To capture that intuition, we
adopt the linear multifactor framework of the discrete-time ICAPM. Given the
linearity of the ICAPM framework, to examine the asset pricing implications
of Equation (8) we consider a linear approximation around the expectations
of average variance, E(AV;), and average correlation, E(AC,). We obtain the
following expression for total market variance:

Vi=—co+c1AV;+c AC,, (9)

where co=E(AV,)E(AC,), c;=E(AC;), and c;=E(AV;). According to (9),
market variance changes are driven by shocks to individual variances and
shocks to correlations. Therefore, the equilibrium unconditional expected
excess return on asset i is

E(Rit)=ymBumi+YumrBamLi+VsmBBsusi+VaavBaavi+yaacBaaci
(10)
where the y terms are the prices of risk related to the market, HML, SM B,
changesin AV, and changes in AC, respectively, and the 8s are factor loadings.
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The implication of the model in Equation (10) is that assets with different
loadings with respect to the risk factors have different average returns. Our
goal is to examine whether portfolios with high and low 7V have loadings with
opposite signs relative to the two separate components of market variance. In
addition, we are interested in the extent to which exposure to these two types
of shocks is priced in the cross section of portfolios sorted by /V.

It is important to emphasize the difference between 1V and AV . The former,
1V, is a stock-specific volatility characteristic that is negatively related to
average returns. The latter, AV, is amarket-wide volatility variable that contains
both systematic and idiosyncratic components. Even though both /V and AV
are measures of volatility, it does not automatically follow that stocks with
high 7'V necessarily have high AAV loadings. This is the case since AV also
contains systematic volatility components.

2. Estimation of Average Variance and Average Correlation

2.1 Data and descriptive statistics
We use monthly and daily stock returns from CRSP for the period from July
1963 to December 2009. We include all ordinary common equities (share
codes 10 or 11) on the NYSE, AMEX, and NASDAQ. The market portfolio is
the value-weighted NYSE/AMEX/NASDAQ index return. Excess returns are
computed relative to the 30-day T-bill rate.

Each month, we compute the variance of the market portfolio using within-
month daily returns:

Dy Dy
Vir=) Rig+2Y  RuaRua-1, (11)
d=1 d=2

where D; is the number of days in month 7 and Ry, is the portfolio’s return on
day d. The second term on the right-hand side adjusts for the autocorrelation
in daily returns, following French, Schwert, and Stambaugh (1987).

Next, we derive the two separate parts of market variance. Average stock
variance, AV, is the value-weighted average of monthly stock variances using
daily data:

Ny Dy Dy
AV:=ZW: ZRizd‘l'zZRidRidfl ) (12)
i=1 d=1 d=2

where R;, is the return of stock i in day d and N; is the number of stocks that
exist in month #.° This measure is based on total stock variance, and therefore,
it includes both systematic and idiosyncratic components.

6 We also compute  the  arithmetic  average of monthly stock  variances, AV =
N% Zl\gl [25;1 Rizd +ZZLI1)=12 Riq Rid—l]v and obtain similar results. It is possible that the second term
in Equation (12) may dominate the first term when there are negative autocorrelations, which produces negative

estimates of variance. For these stocks, we follow Goyal and Santa-Clara (2003) and use only the first term in
the calculation.
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Table 1

Market variance and its components: Descriptive statistics and time-series regressions

Panel A: Descriptive statistics

Variable Mean Median Std. Dev. Min Max AR(1) AR(2) AR(3)
\% 0.0023 0.0013 0.0045 0.0001 0.0671  0.3653 0.1733 0.1292
AV 0.0104 0.0079 0.0097 0.0024  0.1030  0.6478 0.5153 0.4775
AC 0.2086 0.1955 0.1054 0.0174  0.6530  0.6358 0.5269 0.4865
Panel B: Time-series regressions
€8} 2) 3) (C)) (5 (6) @ ®)
Constant 0.00 —0.24 —0.18 —-0.33 —0.09 —0.11 0.32 —0.42
0.22)  (—2.25) (=2.67) (=5.52) (1.25) (—1.28) (0.68)  (—0.59)
AV % ACt 87.52
(13.32)
ACy 2.26 0.93
(3.84) (3.64)
AVy 39.32 35.14
(5.16) (4.66)
AV, 17.01 17.29 —65.31 —59.42
(3.23) (3.000 (—3.43) (-=2.81)
AC;_ 0.71 0.58 3.75 2.12
(3.02) (2.73) (1.68) (1.04)
DIV, 2.58 34.88
(0.89) (1.25)
TERM;_ —2.36 19.89
(=1.75) (0.87)
DEF,_ 542 42.43
(1.17) (0.63)
RF;_ —18.64 —138.30
(—1.56) (—0.82)
R2 0.93 0.29 0.73 0.77 0.22 0.22 0.02 0.03
Panel C: Factor means, volatilities, and correlations
Factor Mean Std. Dev. HML SMB AAV AAC PAV PAC
Ry 0.42 4.51 —0.33 0.30 —0.16 0.12 —0.32 0.37
HML 0.42 2.94 —0.25 0.02 —0.08 0.01 —0.26
SMB 0.25 3.19 —0.16 —0.01 —0.35 —0.02
AAV 0.00 4.50 —0.24 0.35 —0.09
AAC 0.00 4.50 —0.05 0.20
PAV —0.63 1.59 —0.26
PAC 0.15 0.88

Panel A shows descriptive statistics for market variance, V, average stock variance, AV, and average stock
correlation, AC. V is calculated as in Equation (11), AV is computed as in Equation (12), and AC is computed as
the cross-sectional average of the pairwise correlations of daily returns during each month for all stocks trading
on the NYSE/NASDAQ/AMEX. AR(i) denotes the i order autocorrelation of each series. Panel B shows
contemporaneous (Columns (1)—(4)) or predictive (Columns (5)—(6)) time-series regressions for V, and predictive
regressions (Columns (7)—(8)) for the excess market return, Ry;. The explanatory variables are AV« AC, AV,
AC, DIV (dividend yield), TERM (term spread), DEF (default spread), and RF (30-day T-bill rate). All
coefficients are multiplied by 100. Newey-West 7-statistics with six lags are in parentheses. Panel C reports the
sample means (in %), volatilities (in %), and correlations for the Fama-French factors, innovations in AV and
AC, and the mimicking portfolios for innovations in average variance and average correlation, PAV and PAC,
computed as described in Section 3.4. The sample period is from July 1963 to December 2009.

Average stock correlation, ACy, is the value-weighted average of pairwise
correlations of daily returns during each month for all stocks. Summary
statistics for value-weighted market variance, average stock variance, and
average stock correlation are provided in Panel A of Table 1.
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Panel A of Figure 1 plots the time series of monthly market variance (solid
line) and the product of average variance and average correlation (dotted line)
for the period July 1963 to December 2009. The figure shows that the two
series track each other very closely. The correlation between the two is 97%.
Panel B plots the time series of average variance, while Panel C plots average
correlation. The sample correlation between AV and AC is 41%. The series do
not exhibit a significant trend over time.

InTable 1, Column (1) of Panel B reports a contemporaneous OLS regression
of market variance from Equation (11) on the product of average variance from
Equation (12) and average correlation. We use Newey-West ¢-statistics with
six lags. The R? of the regression is 93%, which indicates that the variation in
market variance is almost entirely captured by the product of contemporaneous
average variance and average correlation.

Columns (2) and (3) in Table 1 present estimates of the relative importance
of average variance and average correlation for changes in market variance.
Column (2) shows that average correlation accounts for 29% of the variation
in market variance, while Column (3) shows that average variance accounts
for 73%. When both AV and AC are included in the regression in Column (4),
they explain 77% of the contemporaneous movements in market variance. The
results in Column (4) indicate that the linearization in Equation (9) is reasonable
because we are able to explain most of the variation in total market variance.
Furthermore, they reveal that the major component of total market variance is
average stock variance.

Next, we analyze the ability of AV and AC to predict future market variance.
Column (5) of Panel B in Table 1 reports a predictive OLS regression of
market variance on average variance and average correlation. Both variables
predict higher market variance in the next period. The R? of the regression is
22%, and the two variables are jointly significant. If the only variable in the
regression is AV, the explanatory power of the model is 19%. In Column (6),
we control for the aggregate dividend yield (DIV), term spread (T ERM),
default spread (D E F), and the short-term T-bill rate (RF). DIV is computed
as the sum of aggregate dividends over the last 12 months, divided by the
level of the market index, T ERM is the difference between the yields of a
ten-year and a one-year government bond, and D E F is the difference between
the yields of long-term corporate Baa and Aaa bonds. Bond yields are from the
FRED database of the Federal Reserve Bank of St. Louis. Average variance and
average correlation remain significant predictors of aggregate market variance.
Average stock variance appears to be the dominant predictor of realized market
variance.’

We also augment the predictive regression from above with past values of realized market variance, V,
orthogonalized to AV and AC. The goal is to test whether there are some remaining components of market
variance, which are not captured previously. The results show that past values of realized market variance do
not contribute any explanatory power over and above the six predictive variables from Column (6). The results
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Figure 1

Calendar Time

Market variance and its components
Panel A plots the monthly variance of the market portfolio (solid line) and the product of average stock variance
and average stock correlation (dotted line). Market variance is calculated using Equation (11), and average stock
variance is computed using Equation (12). Average stock correlation is computed as the value-weighted cross-
sectional average of the pairwise correlations of daily returns during each month for all stocks trading on the
NYSE/NASDAQ/AMEX. In Panel A, the y-axis scale is cut off at 0.02. The values outside the scale are presented
in text boxes. Panels B and C plot separately average stock variance and average stock correlation, respectively.
The sample period is from July 1963 to December 2009.
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Columns (7) and (8) of Panel B in Table 1 examine the ability of average
variance and average correlation to predict future market returns. Column
(7) shows that AV is significantly negatively related to the one-month-ahead
market return. In contrast, AC is positively related to future market returns,
but the relation is not significant. Similar results hold in Column (8) when we
control for other commonly used predictive variables. The R? of the predictive
regression is comparable to other studies that analyze the predictability of the
monthly market return.

Pollet and Wilson (2010) also document that AV is negatively related to
future market returns, while AC is positively related. However, they find that
only the latter relationship is significant. This is in contrast to our finding that
AV is the only significant predictor of the excess market return.® The difference
in significance between our results and theirs could stem from using different
sample periods, different data frequency, and different sets of stocks to compute
AV and AC. Namely, Pollet and Wilson (2010) use quarterly data and the 500
largest stocks. We use all stocks to compute AV and AC since our main focus
is on explaining the cross section of stock returns that contains stocks with
various market capitalizations.

The negative relation between AV and future market returns may be a result
of the positive correlation between AV and the aggregate market-to-book ratio
(51% in our sample). The market-to-book ratio is closely related to firms’
growth opportunities, and it is also a negative predictor of future market returns.
We explore the relation between AV and aggregate market-to-book in more
detail in Section 5.3.

The predictive regressions in Panel B of Table 1 have implications for
the cross-sectional pricing of AV. Given that AV is a negative predictor
of future market returns and a positive predictor of future market variance,
its role as a pricing factor can be interpreted in the context of Campbell
(1993). Campbell suggests that a positive shock to any variable that predicts
a decrease in the expected market return would signal that investors face
deteriorating investment opportunities. Chen (2003) extends Campbell’s (1993)
results and shows that investment opportunities also depend on movements in
market variance. Since AV predicts higher future market variance, positive
shocks to AV represent deterioration in investment opportunities along the
risk dimension as well. This in turn causes risk-averse investors to increase
precautionary savings and reduce current consumption. Therefore, positive
shocks to AV indicate that investors will face lower expected returns and higher
risk in the future. Such a variable should command a negative price of risk in

are not surprising since average stock variance and correlation are more persistent than market variance, with
first-order autocorrelations of 0.65 and 0.64, respectively (Panel A of Table 1).

Guo and Savickas (2008) examine a predictive regression that contains AV and aggregate market variance. They
find that AV is a significant and negative predictor of the excess market return in the United States and G7
countries.
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the cross section of expected returns. Assets that pay off well when shocks to
AV are positive provide a hedge against worsening investment opportunities
and should earn lower expected returns.

Similarly, the cross-sectional pricing of AC should be related to its ability
to predict investment opportunities. Given that AC is a positive predictor of
future market returns and a positive predictor of future market variance, its role
as a pricing factor is ambiguous.

If portfolios with high (low) IV relative to the Fama-French model have
positive (negative) loadings with respect to changes in AV, then they should
have lower (higher) expected returns. If /V proxies for exposure to average
variance, then IV should have no additional explanatory power for average
returns over and above loadings to average variance. As we show later, these
predictions are supported for the case of average variance. In the sample that we
examine, average correlation does not appear to be priced. This is consistent
with the previous results, which show that AC predicts both higher future
returns and higher future aggregate risk.

2.2 Extracting the innovations in average variance and average
correlation

To test the model in Equation (10), we need to estimate the innovations in

average variance and average correlation. We adopt the vector autoregressive

(VAR) approach of Campbell (1996) and specify a state vector z, that contains

the excess market return, HM L, SM B, AV, and AC. The demeaned vector z;

follows a first-order VAR:

Zt:AZ[7]+M[. (13)

The residuals in the vector u; are the innovation terms that will be used as risk
factors.

The innovations at each time ¢ are computed by estimating the VAR using
data available up to time ¢. This eliminates a potential look-ahead bias if the
full sample is used to estimate the VAR. The first VAR in the series contains 36
months, and the first observation for the innovation factors is for July 1966.

Campbell (1996) emphasizes that it is hard to interpret estimation results
for a VAR factor model unless the factors are orthogonalized and scaled in
some way. Following Campbell (1996), we triangularize the VAR system in
Equation (13) so that the innovation in the excess market return is unaffected
and the orthogonalized innovation in AV is the component of the original
AV innovation orthogonal to the excess market return, HM L, and SM B.
The orthogonalized innovation in AC is the component of the original AC
innovation orthogonal to the excess market return, HML, SMB, and AV,
and so on. We also scale all innovations to have the same variance as the
innovation in the excess market return. The variables in the VAR system are
ordered so that the resulting factors are easy to interpret. The orthogonalized
innovation to AV is a change in average stock variance with no change in the
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stock return, H M L and SM B. Thus, it can be interpreted as a shock to average
stock variance. Similarly, the orthogonal innovation to AC measures shocks to
average correlation that are orthogonal to stock returns, stock variance, HM L,
and SM B.° Panel C of Table 1 reports the mean values, the volatilities, and the
correlations between the Fama-French factors and innovations in AV and AC.

Da and Schaumburg (2011) construct a factor similar to innovations in
average variance. Their factor performs well in explaining the cross section
of returns across equity portfolios, options, and corporate bonds. However,
they do not study the idiosyncratic volatility puzzle and the relation between
their volatility factor and other macroeconomic variables.

3. The Cross Section of Portfolios Sorted by Size and Idiosyncratic Volatility

9

3.1 Revisiting the idiosyncratic volatility puzzle
We begin by documenting that the IV effect exists in our sample and that it
cannot be explained by exposure to total market variance.

Every month, we sort stocks into five size quintiles and then we further sort
them by 1V relative to the Fama-French model. We use NYSE size breakpoints
to avoid the small size issues noted in Bali and Cakici (2008). Monthly 1V
is computed as the standard deviation of the residuals from a Fama-French
(1993) regression based on daily returns within the month. At least 15 daily
observations are required in estimating /V, except on 9/2001 when only 10
observations are required. We form 25 value-weighted portfolios and record
their monthly returns for the period from July 1963 to December 2009. These
portfolios represent our basic set of test assets.”

Panel A of Table 2 reports the Fama-French alphas of the 25 portfolios.
High (low) I'V portfolios have negative (positive) Fama-French alphas. The
difference in alphas between high and low 7'V stocks is statistically significant
in size quintiles 1, 2, and 3. The average difference in alphas between high
and low 7'V portfolios across all size quintiles is —0.75%, with a z-statistic of
—4.54.

Next, we augment the Fama-French model with total market variance to
test whether this model captures the negative /' V premium in the cross section
of 25 size-1V portfolios. We estimate a VAR system, as described in Section
2.2, with the excess market return, HM L, SM B, and total variance, V. The
innovations in market variance from the VAR system are used as risk factors in
the cross section of returns. We estimate prices of risk using the Fama-MacBeth
(1973) two-stage method. In the first stage, betas are estimated over the full
sample as the slope coefficients from the following return-generating process:

Riy=a;i+BuiRymi+Brumri HM L+ Bspypi SM B +Bavi AV, +ei;, (14)

We find similar results using a different ordering of the VAR system. In addition, including the predictive variables
from Panel B of Table 1 in the VAR produces similar results.

Results for equally weighted portfolios are similar and are available upon request.
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Table 2
Portfolios sorted by size and idiosyncratic volatility: Revisiting the idiosyncratic volatility puzzle

Panel A: Fama-French alpha

Low IV 2 3 4 High IV
apF diff
Small 0.21* 0.22* —0.06 —0.54* —1.58* —1.79*
2 0.17 0.22* 0.13 0.04 —0.74* -0.91*
3 0.04 0.18* 0.11 0.03 —0.46* —0.50*
4 0.01 0.04 0.14 0.10 —0.27* —0.28
Large 0.11 0.09 0.09 —0.08 —0.17 —0.28
Panel B: Fama-French model augmented with AV
Y0 YM YHML YSMB Yav Yivol R?
—0.14 0.50 0.19 0.20 -7.27 0.71
(—1.95) (2.26) (0.80) (1.22) (—4.21)
—0.16 0.76 0.48 0.39 —4.00 —4.56 0.89
(—1.85) (3.48) (2.45) (2.83) (—3.78) (=3.71)
Panel C: Loadings on AV
Low IV 2 3 4 High IV
Bav diff
Small —0.09* —0.08* —0.07 —0.05 —-0.02 0.07
2 —0.10* —0.07* —0.08* —0.05 —-0.07 0.03
3 —0.05* —0.05* -0.07* —0.06* —0.03 0.02
4 —0.03 —0.03 —0.03* —0.03 —0.04 0.01
Large 0.03* 0.04* 0.04* 0.03* 0.01 -0.02

Panel A presents the Fama-French alphas (in % per month) of 25 portfolios sorted by size and idiosyncratic
volatility (/V). The last column of Panel A reports the difference in alpha between high and low IV stocks
within each size quintile. Panels B presents Fama-MacBeth cross-sectional regressions using the excess returns
of 25 size-1V portfolios. The factor betas, which are the independent variables in the regressions, are computed
over the full sample. The model is the Fama-French model augmented with innovations in total market variance
(AV). The panel examines whether portfolio-level idiosyncratic volatility, ivol, has incremental explanatory
power in the Fama-French model augmented with AV. The variable ivol is lagged one month relative to excess
returns. The adjusted R? follows Jagannathan and Wang (1996). The ¢-statistics are in parentheses and adjusted
for errors-in-variables, following Shanken (1992). All coefficients in Panel B are multiplied by 100, and the
market portfolio, H M L, and SM B are included among the test assets. Panel C reports the AV loadings of the 25
size-1V portfolios from the time-series regressions. The last column of Panel C reports the difference in loadings
between high and low 7V stocks within each size quintile. The asterisks indicate significance at the 5% level or
higher, based on Newey-West ¢-statistics with six lags. The sample period is from July 1966 to December 2009.

where AV stands for innovations in aggregate market variance.
The slope coefficients from (14) are used as independent variables in

Rii=yo+ VM/§Mi +YHaML BHMLi +YsmB BSMB[ + VAVBAVi +€i;. (15)

We also compute the adjusted cross-sectional R?, which follows Jagannathan
and Wang (1996). Since the betas are generated regressors in (15), the #-statistics
associated with the y terms are adjusted for errors-in-variables, following
Shanken (1992).

Panel B of Table 2 present results from estimating Equation (15) for 25 size-
1V portfolios. We also include the market return, HM L, and SM B among
the test assets. This is motivated by Lewellen, Nagel, and Shanken (2010),
who suggest that when some of the asset pricing factors are traded portfolios,
they should be included in the set of test assets. The price of risk for AV is
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negative and significant, which is consistent with AHXZ. The intercept yy is
significant at the 10% level, which suggests that some of the 25 portfolios might
be mispriced relative to this model.

Panel B in Table 2 also examines whether portfolio-level / V has incremental
explanatory power over and above portfolio loadings with respect to AV.
Portfolio 7V is computed as the value-weighted average of the /Vs of the
stocks in the portfolio and is denoted as ivol. The panel shows that the model
from (15) does not capture the IV effect since the coefficient in front of ivol is
negative and significant. Individual /V adds 18% of explanatory power over
and above the factor loadings. Therefore, loadings to innovations in market
variance cannot completely capture the IV effect.

Panel C of Table 2 reports the full-sample loadings of the 25 portfolios with
respect to AV, estimated from Equation (14). With the exception of the largest
quintile, all portfolios have negative AV betas. Combined with the negative
price of variance risk, this indicates that exposure to aggregate variance predicts
higher expected returns for these portfolios than predicted by the Fama-French
model. This is not consistent with the fact that high 7V stocks have negative
Fama-French alphas.

The AV loadings of high 7'V stocks in the three smallest quintiles are lower in
magnitude than those of low 1 V stocks. This is not consistent with Equation (3),
which shows that IV relative to the Fama-French model is an increasing
function of the magnitude of beta with respect to the missing factor. Finally,
the spread in AV betas between high and low IV stocks is not significant in
any size quintile. Therefore, changes in total variance do not seem to capture
the factor missing from the Fama-French model.

Our findings in Table 2 are consistent with AHXZ, who find that innovations
in the VIX index are not able to explain the /V puzzle. They show that the
AVIX loadings of high and low IV portfolios have the same sign, while
opposite signs are necessary to explain the puzzle.

Other studies that examine the pricing of total market variance include Adrian
and Rosenberg (2008), Moise (2010), and Da and Schaumburg (2011). They
also show that changes in aggregate market variance command a negative price
of risk in the cross section of various portfolios. However, they do not examine
the 1V puzzle. Our results suggest that a different factor is needed to address
the puzzle.

3.2 Prices of risk for average variance and average correlation

The key to explaining the IV puzzle is in separating the two components of
market variance, AV and AC. We estimate the factor prices of risk from model
(10) using the excess returns of 25 size-1V portfolios and the Fama-MacBeth
(1973) two-stage method. In the first stage, betas are estimated as the slope
coefficients from the following process for excess returns:

Riy=ati+Bumi Rus+BumriHM Li+BsypiSM Bi+BaaviDAVi+Baaci AAC +e;.

(16)
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We use two different sets of betas. Following Black, Jensen, and Scholes
(1972) and Lettau and Ludvigson (2001), we use the full sample from July
1966 to December 2009 to estimate regression (16). The asset pricing test
starts in July 1966 since we use the first 36 months of the sample to compute
the first observations for the innovation factors. If the true factor loadings
are constant, the full-sample betas should be the most precise. Alternatively,
following Ferson and Harvey (1999), we estimate regression (16) using 60-
month rolling windows. The rolling windows start in July 1966 as well, and
the corresponding betas are called rolling betas. In the second stage, we use
cross-sectional regressions to estimate the factor prices of risk:

Rit=yo+YmBumi+vamrBumri+YsmBsmpi+YaavBaavi+yaacBaaci+e€ir.

A7)
For the case of full-sample betas, we use the same betas every month, while
for the case of rolling betas, portfolio excess returns at ¢ are regressed on factor
loadings estimated using information from ¢ — 60 to ¢ — 1. Following Lewellen,
Nagel, and Shanken (2010), we include the market return, HM L, and SM B
in the set of test assets. Therefore, the asset pricing model is asked to price the
traded factor portfolios as well.

Columns (1), (2), (6), and (7) of Table 3 report results for the benchmark
Fama-French model. For both full-sample and rolling betas, the cross-sectional
intercept is significant, indicating that the pricing error of the model is not zero.
The explanatory power of the model is low, and individual portfolio IV is
significantly priced in the presence of the Fama-French betas.

Columns (3) and (8) of Table 3 report the results for Equation (17). For the
case of full-sample betas, AAV loadings represent a significant determinant
of expected returns. The price of risk for AAV is negative at —7.7%. For the
25 size-1V portfolios, the 1st-percentile AAV beta is —0.06, while the 99th-
percentile AAV beta is 0.17. Since the price of AAV risk is —7.7%, if AAV
beta increases from the 1st to the 99th percentile, expected return will decrease
by 1.8% per month.

The market betas of the 25 portfolios are also significant determinants of
their average returns. The estimated market price of risk is positive at 0.48%
and not statistically different from the average excess market return of 0.42%.
All the factors in the model are jointly significant.

Since we use excess portfolio returns, the intercept y is the pricing error of
the model and it should be zero if the model is correct. This hypothesis cannot
be rejected. Overall, the model is able to explain 80% of the variation in average
returns. In Appendix A, we present a Monte Carlo experiment that derives the
finite-sample distribution of the cross-sectional ¢-statistics. The conclusions
based on the small-sample distribution of the z-statistics are in line with the
asymptotic results reported in Table 3.

For the case of rolling betas in Column (8) of Table 3, loadings with respect
to AAV are again significant. The price of risk for AAV is still negative;
however, its magnitude is smaller at —2.60%. For the 25 size-1V portfolios,
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Table 3
Cross-sectional regressions: Main results
Full-sample betas Rolling betas
(€)) 2 3) (C)) (5) (6) @) ®) ©) (10)
Y0 0.16 —0.23 0.02 0.01 —0.08 032 —0.16 0.12 0.17 0.13
(2.71) (=3.23)  (0.02) (0.11) (—0.69) (4.88) (=2.69) (1.63) (1.62) (1.65)
YM 0.34 0.83 0.48 0.46 0.64 0.18 0.76 0.33 0.28 0.37
(1.66) (3.82) (2.12) (2.09) (291 (0.81) (3.55) (1.48) (1.25) (1.60)
YHML 0.67 0.80 0.34 0.26 0.45 0.39 0.69 0.40 0.36 0.37
(3.63) (449 (1.27) (1.29) (1.86) (2.37) (429 (2.18) (2.07) (2.04)
YSMB —0.15 0.39 0.19 0.22 0.29 —0.07 0.43 0.10 0.09 0.09
(—0.95) (2.71) (1.18) (1.43) (2.15) (—0.43)  (3.04) (0.58) (0.56) (0.57)
YAAV —-7.70 —-6.52 523 —-2.60 —2.61 —2.69
(—4.09) (—4.28) (—3.35) (—4.99) (=5.13) (—5.12)
YAaAC 5.21 5.48 135 ~1.56
(1.39) (1.80) (—1.67) (—1.81)
Yav 1.91 1.40
(0.89) (1.55)
Yivol —17.65 —2.46 —-7.52 —0.63
(~8.18) (~1.52) (~9.14) (—1.14)
R2 022 084 080 075 085 019 08 070 06 071

This table presents Fama-MacBeth regressions using the excess returns of 25 portfolios sorted by size and
idiosyncratic volatility. The factor betas, which are the independent variables in the regressions, are computed
either over the full sample (full-sample betas) or in 60-month rolling regressions (rolling betas). The variables
AAV and AAC refer to innovations in average variance and average correlation, respectively, computed as
described in Section 2.2. The variable AV refers to innovations in total market variance. The variable ivol refers
to individual portfolio idiosyncratic volatility and it is lagged one month relative to excess returns on the left-hand
side. The adjusted R follows Jagannathan and Wang (1996). The 7-statistics are in parentheses and adjusted for
errors-in-variables, following Shanken (1992). All coefficients are multiplied by 100, and the market portfolio,
HML, and SM B are included among the test assets. The sample period is from July 1966 to December 2009.

the 1st-percentile AAV rolling beta is —0.09, while the 99th-percentile AAV
rolling beta is 0.25. Therefore, if AAV rolling beta increases from the 1st to the
99th percentile, expected return will decrease by 0.9%. We find that the full-
sample regressions in the first stage of the Fama-MacBeth method yield more
precise AAV beta estimates than 60-month rolling regressions. Therefore, the
attenuation bias seems to be less severe with full-sample AAV betas, and that
is why they yield higher y, 4y estimates.!! The intercept y; is not significantly
different from zero at conventional significance levels.

The price of risk for AAC is not significant. It switches from positive in the
case of full-sample betas to negative in the case of rolling betas.

It is also helpful to provide a visual comparison of the performance of the
Fama-French model and the model augmented with AAV and AAC. To do that,
we plot the fitted expected return of each portfolio against its realized average
return in Figure 2. The fitted expected return is computed using the estimated
parameter values from a given model specification. The realized average return
is the time-series average of the portfolio return. If the fitted expected return
and the realized average return for each portfolio are the same, then they should
lie on a 45-degree line through the origin. Each two-digit number in Figure 2

A similar point is made in Liu and Zhang (2008), who use the Fama-MacBeth approach to study the cross section
of momentum portfolios.
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represents a separate portfolio. The first digit refers to the size quintile of the
portfolio (1 being the smallest and 5 the biggest), while the second digit refers
to the 7V quintile (1 being the lowest and 5 the highest).

Panel A of Figure 2 shows the performance of the Fama-French model. The
model produces significant pricing errors for the high /V portfolios within
size quintiles 1 and 2. In contrast, Panel B shows that the Fama-French model
augmented with AAV and AAC is more successful at pricing the portfolios
that are challenging for the Fama-French model. The high IV portfolios in the
small quintiles move closer to the 45-degree line in the presence of the AAV
and AAC factors.

Next, we test whether aggregate market variance has incremental explanatory
power over and above average variance. We first run a VAR that contains
the market return, HML, SMB, AV, and V. The innovations from the VAR
are the factors in the asset pricing model. Innovations in V are orthogonal
to innovations in AV. Since average variance is a component of aggregate
market variance, when both of them are included in the asset pricing equation
it constitutes a direct test of the marginal explanatory power of V. The results
are presented in Columns (4) and (9) of Table 3. The component of aggregate
market variance that is orthogonal to average variance is not priced in the
cross section of returns. The results are robust to including average correlation
in the model.

Finally, we perform a direct test of whether individual portfolio /V has
incremental explanatory power over and above portfolio loadings with respect
to innovations in AV. We include portfolio-specific idiosyncratic volatility,
denoted as ivol, in Equation (17). If loadings with respect to innovations in
average variance explain the /V puzzle, then the coefficient in front of ivol
should be zero.

Columns (5) and (10) of Table 3 show that there is no residual IV effect
in the model that contains innovations in average variance. With full-sample
betas, the risk premium of AAV remains significant. The cross-sectional R?
indicates that individual portfolio /V does not add much explanatory power
over and above the factor loadings. The same conclusions hold for rolling betas.

In summary, the results are in line with the argument that changes in average
variance represent the factor omitted from the Fama-French model. In the
context of Equation (3), our results suggest that IV relative to the Fama-
French model proxies for assets’ loadings with respect to innovations in average
variance. In the presence of these loadings, the IV puzzle of AHXZ disappears.

3.3 Factor loadings

A negative price of risk for AAV means that assets that covary positively
(negatively) with innovations in AV should have lower (higher) expected
returns since they have higher (lower) payoffs when future investment
opportunities turn for the worse. Thus, if exposure to changes in average
variance is to explain the IV puzzle, stocks with high (low) IV must have
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Panel A: The Fama-French model

x 10
T T T T T T T T T
10f b
8k 41 42
c .l 132 224,
5 4 14 31 % 1 i
@ .5 a2
3 R 54«59 44 913 23
k5 25 g5 X 24 34
o 2oF Y i
o
&§  oF 1
el
g -2 .
E
—4F i
—6F i
_G 1 1 1 1 1 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8 10 12
Average Realized Return x10°
Panel B: The Fama-French model augmented
x 102 with AAV and AAC
T T T T T T T T
j
£ i
@
o i
°
L
& i
[0}
o
x .
w
°
L i
E
_8 1 1 1 1 1 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8 10 12
Average Realized Return -3
x 10
Figure 2

Fitted expected returns versus average realized returns

This figure shows realized average returns (in %) on the horizontal axis and fitted expected returns (in %) on
the vertical axis for 25 portfolios sorted by size and idiosyncratic volatility. Each two-digit number represents
a separate portfolio. The first digit refers to the size quintile (1 being the smallest and 5 the largest), while the
second digit refers to the idiosyncratic risk quintile (1 being the lowest and 5 the highest). For each portfolio,
the realized average return is the time-series average of the portfolio return and the fitted expected return is the
fitted value for the expected return from the corresponding model. The straight line is the 45-degree line from
the origin. The sample period is from July 1963 to December 2009.
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positive (negative) AAV betas. Next, we report the full-sample factor loadings
for the 25 portfolios estimated from regression (16).

Panel A of Table 4 shows that stocks with high IV tend to be small growth
stocks with high market betas, while stocks with low 7'V tend to be large value
stocks with low market betas. The differencesin Ry;, HM L, and SM B loadings
between high and low 'V stocks are significant in each size group.

Panel A of Table 4 also reports that within each size quintile except quintile
5, high I'V stocks have positive AAV betas while low IV stocks have negative
AAV betas. In addition, as we move from larger to smaller quintiles, the
magnitude of the betas of the two extreme idiosyncratic groups increases.
The portfolios that have significant AAV betas tend to be concentrated in
size quintiles 1 and 2. All 25 A AV betas are jointly significant. In judging the
significance of the A AV factor loadings, itis also useful to look at the difference
in Baay between high and low 'V assets. Since the IV puzzle documented by
AHXZ is a cross-sectional result, if the AAV factor is to explain the puzzle,
then the A AV loadings of assets that differ in / V must differ from each other.
As Table 4 shows, the difference in So4y between high and low I'V stocks is
significant in the first three size quintiles. These are the quintiles in which the
1V puzzle is observed (Table 2, Panel A). Even though the IV effect and the
significant spread in AAV betas are concentrated in size quintiles 1, 2, and 3,
the results are not likely to be driven by the smallest stocks. This is the case
since we use NYSE breakpoints to construct the 25 size-1V portfolios. When
we use CRSP breakpoints to construct these portfolios, the IV effect is present
in all CRSP quintiles, but it is weaker in the smallest quintile. These results are
available upon request.

The AAYV betas of high 1V portfolios in all size groups (except quintile 4) are
larger in magnitude than the A AV betas of low I V portfolios. This is consistent
with Equation (3), which indicates that 7V relative to the Fama-French model
is an increasing function of the magnitude of beta with respect to the missing
factor.

Since the AAV betas are derived in a multiple time-series regression, they
are conditional on the other factor betas. So, the positive AAV betas of high IV
stocks indicate that these stocks do better than predicted by the Fama-French
model in times of high volatility. Therefore, while all stocks may be negatively
affected by increasing market-wide volatility, high 7'V stocks are less so.

Dohigh 1V stocks have positive A AV betas mechanically since AV contains
idiosyncratic components? We address this question by noting that the AAV
factor is not a traded portfolio. Therefore, it is not weighted by design toward
stocks that are likely to exhibit a high 7V characteristic. Among portfolios
with similar 7 Vs, there is a sizable spread in AAV betas. For example, in the
highest IV quintile, the spread in AAV loadings goes from 0.02 to 0.19 and the
difference is significant. In the third / V quintile, some portfolios have negative
AAV betas, while others have positive ones. There are also instances in which
a portfolio with high 7V has a lower AAV beta than a portfolio with a lower
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1V (e.g., the high IV portfolios in size quintiles 4 and 5 vs. the small portfolio
in IV quintile 3).

In Appendix B, we decompose AV into a systematic component and
an idiosyncratic component. The results suggest that high (low) IV
portfolios have positive (negative) loadings to the systematic component
of AV, and these loadings are significant determinants of expected
returns. Therefore, it is unlikely that the previously documented relation
between the IV of a portfolio and its exposure to AAV is purely
mechanical.

Panel A of Table 4 also shows the loadings of the 25 portfolios with respect
to AAC. All of the loadings (except for quintile 5) are negative, and the
spread in AAC betas between high and low IV stocks does not seem high
enough to explain differences in average returns. The spread in AAC betas
between high and low IV stocks is not significant, except for the largest
quintile.

If we combine the patterns of AAV and AAC betas from Table 4, we will
get a pattern that resembles the one for AV betas in Panel C of Table 2. Still, the
pattern of AV betas is closer to the one of AAC betas. This finding suggests
that because of the confounding effect of correlations, loadings with respect to
changes in aggregate market variance are not able to price all portfolios sorted
by IV.

Finally, Panel A of Table 4 shows the time-series intercepts «; of the 25
portfolios. Since some of the factors in our model are not traded portfolios, the
restriction on the time-series intercepts is

o —Bi(y —E(f)=0, (18)

where .= [Bui, Bumri,» Bsmsi> Baavis Baacils v=Iym, Yumr, Vsus,
vaav,yaacl,and E(f)=[E(Rm), ECHML), E(SMB), E(AAV), E(AAC)].
The pattern in the «;s from Panel A of Table 4 shows that high 7V stocks have
lower expected returns than low IV stocks in each size quintile. Note that we
do not report the significance of the individual ¢;s in Panel A of Table 4 since
the null hypothesis is not Hy: o; =0.

Panel B of Table 4 reports the measure from Equation (18) for each portfolio,
and the corresponding asymptotic z-statistics for the null hypothesis Hj:
o — ,3; (y —E(f))=0. The results indicate that the model-implied restriction
on the time-series intercept of each portfolio cannot be rejected according to
conventional asymptotic testing. Since the s and y's are estimated parameters,
we also derive the small-sample distribution of the #-statistic associated with
the null hypothesis in (18). More details about the derivation are provided in
Appendix A. The 2.5th- and 97.5th-percentile values of this distribution are
reported below each ¢-statistic. In general, the pattern of statistical significance
of o; — ,3;()/ — E(f)) from the small-sample distributions matches that of the
asymptotic distributions.
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3.4 Mimicking portfolios for innovations in average variance and
average correlation

The results so far suggest that the risk associated with increasing average
variance is priced. Therefore, investors might be willing to hold a portfolio that
hedges unexpected increases in average variance. In this section, we derive such
aportfolio that tracks innovations in AAV, and examine its ability to explain the
time-series and cross-sectional variation in returns sorted by / V. We also derive
a mimicking portfolio for AAC. The advantage of using mimicking portfolios
for innovations in AV and AC is that the excess returns of the mimicking
portfolios measure the prices of risk associated with innovations in the state
variables.

Following Breeden, Gibbons, and Litzenberger (1989), we form a mimicking
portfolio for AAV by estimating the fitted value from the following regression:

AAV,=c+bX,+u,, (19)

where X, represents the excess returns on base assets. The return on the portfolio
bX, is the factor that mimics innovations in average variance. It is denoted
as PAV. We use 25 portfolios sorted by size and AAV loadings as base
assets.!? Panel C of Table 1 reports summary statistics for the P AV factor. The
correlation between PAV and AAV is 35%. The average return of portfolio
P AV over the full sample period is -0.63% per month. This is the price of risk
associated with innovations in average variance.

Similarly, we use 25 portfolios sorted by size and AAC loadings to form
a mimicking portfolio for innovations in average correlation. That portfolio is
denoted as PAC. Summary statistics for PAC are in Panel C of Table 1. The
correlation between PAC and AAC is 20%.

Next we augment the Fama-French model with PAV and PAC to test
whether it can capture the 1V effect. In the first step, we regress the time series
of excess returns of each portfolio on the market return, HML, SMB, PAV,
and PAC. The regression and the two mimicking portfolios are estimated
simultaneously through GMM. Since all factors are traded portfolios, the time-
series intercept is a risk-adjusted return and it should be zero under the null
hypothesis. Panel A of Table 5 reports the time-series intercepts from the
Fama-French model augmented with PAV and P AC, together with the factor
loadings. Compared to the Fama-French alphas in Panel A of Table 2, the
alphas of the high 7V stocks in Panel A of Table 5 are substantially smaller
(except for the largest stocks). None of the alphas are statistically significant.
The chi-square statistic for the joint significance of the alphas, estimated with
GMM, is 30.15 (p-value = .22) with 25 d.f. Therefore, the alphas are not jointly

For each stock, we estimate factor loadings based on Equation (16). To estimate loadings for month ¢, we use
the previous 60 months of data. Each month, we form 25 value-weighted portfolios based on a double sort by
size and AAV loadings estimated with returns from the previous 60 months.
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significant. The difference in risk-adjusted returns between high and low IV
stocks is not significant in all size quintiles.

Panel A of Table 5 also shows that the PAV betas of high IV stocks are
positive, while the PAV betas of low IV stocks are negative (except for the
largest quintile). Almost half of the size-1 V portfolios are significantly exposed
to PAV. The difference in P AV betas between high and low 7'V portfolios is
statistically significant in quintiles 1, 2, and 3.

In the second step, we test whether exposure to the PAV and P AC factors
is significantly priced in the cross section of returns. Panel B of Table 5 reports
the results. Using full-sample betas in Column (1), the price of risk for PAV
is —0.79% and significant. For the 25 size-1V portfolios, the 1st-percentile
PAYV beta is —0.7, while the 99th-percentile PAV beta is 1.7. Therefore,
if PAV beta increases from the Ist to the 99th percentile, expected return
will decrease by 1.9%. This number is very close to the 1.8% reported in the
case when innovations in AV are used rather than a mimicking portfolio. In
addition, since PAV is a traded portfolio, its price of risk should be equal to
the average return of P AV . The estimated price of risk for PAV (—0.79%) is
not statistically different from the average monthly P AV return (—0.63%).

The cross-sectional intercept in Column (1) of Panel B of Table 5 is not
significant. Column (2) shows that there is no residual / V effect in the presence
of PAV loadings. Similar conclusions hold for rolling betas in Columns (3)
and (4). Overall, when using mimicking portfolios, the results are very similar
to the ones reported with AV innovations. The mimicking portfolio approach
provides an alternative way of measuring the risk premium associated with
exposure to average variance.

4. Alternative Test Assets

4.1 Alternative portfolio sorts

In this section, we use other portfolios to check the robustness of the model.
If the AV factor is indeed an important state variable, it should be able to
price other assets. Also, as Lewellen, Nagel, and Shanken (2010) point out, it
is important to expand the set of test assets when a couple of factors seem to
explain nearly all of the variation in returns.

We use three additional sets of portfolios. The first set consists of 25 portfolios
sorted by size and book-to-market (BM). The second set includes 25 portfolios
sorted by size and past returns. The third set includes 49 industry portfolios.
The returns of the equity portfolios come from Ken French’s website.

We estimate Fama-MacBeth regressions for each of the three sets of
alternative test portfolios. The traded factors in each model are included among
the test assets. Table 6 presents the results using full-sample betas.!> Columns

Results for rolling betas are similar and available upon request.
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(1)—(3) correspond to 25 size and BM portfolios. The benchmark Fama-French
model shows significant pricing errors. Untabulated results show that the
significant pricing errors are due to the growth portfolios in the two smallest
quintiles. When the Fama-French model is augmented with AAV and AAC, the
pricing errors of the model become insignificant. Exposure to average variance
is significantly negative priced in the cross section of size and BM portfolios.
Untabulated results show that the AAV betas of growth stocks are on average
higher that the AAV betas of value stocks. Small growth portfolios appear to
be good hedged for times when average variance is high. Seven of the 25 size
and BM portfolios have significant AAV betas. The difference in exposure to
AAV between value and growth stocks is significant in the smallest quintile.
If AAV beta moves from the 1st to the 99th percentile, a price of risk estimate
of —3.75% implies that expected return will decrease by 1.3%.

When the Fama-French model is augmented with the mimicking portfolios
for AAV and AAC, PAV and PAC, respectively, the pricing errors of the
model are also insignificant. Untabulated results show that more than half of
the 25 size and BM portfolios have significant PAV betas. The difference
in exposure to PAV between value and growth stocks is significant in size
quintiles 1 and 2.

Overall, the results suggest that innovations in average variance represent a
significant factor in the cross section of assets sorted by size and BM. The AAV
factor adds additional information over and above the Fama-French factors.
This is in line with our argument that AAV is a factor missing from the Fama-
French model.

Columns (4)-(6) of Table 6 examine the pricing of 25 size-momentum
portfolios. The benchmark Fama-French model augmented with the momentum
factor U M D shows significant pricing errors. Untabulated results show that the
significant pricing errors are due to the portfolios in the smallest size quintile.
Next, we augment the benchmark model with AAV and AAC. These factors
are derived from a VAR system that contains the market return, HM L, SM B,
UMD, AV ,and AC. Column (5) shows that the pricing errors in the presence
of AAV become insignificant. The price of risk for average variance is negative
and significant. Untabulated results show that the A AV betas of losers (winners)
are positive (negative). Five of the 25 size and BM portfolios have significant
AAV betas. The difference in exposure to AAV between winners and losers
is significant in size quintiles 1,2, 4, and 5. If AAV beta moves from the 1st to
the 99th percentile, a price of risk estimate of —3.12% implies that expected
return will decrease by 1%.

When AAV and AAV are replaced with their mimicking portfolios in
Column (6) of Table 6, we obtain similar results. Untabulated results show that
more than half of the 25 size-momentum portfolios have significant exposure to
the mimicking portfolio for average variance. Overall, AAV and its mimicking
portfolio add explanatory power to the Fama-French model augmented with
the momentum factor.
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Columns (7)—(9) of Table 6 examine the pricing of 49 industry portfolios.
We use the Fama-French model as the benchmark. Column (7) shows that the
benchmark model has a very low explanatory power (5%) and it generates
significant pricing errors. The results in Column (8) show that AAV betas
are significant determinants of the expected returns of industry portfolios and
the explanatory power of the Fama-French model augmented with AAV and
AAC is substantially higher (52%). Untabulated results show that ten industries
have significant exposure to innovations in average variance. The AAV betas
of Hardware, Software, Chips, and Lab Equipment are significantly positive.
This is in line with our argument that growth firms tend to do well when average
variance is high.

When the mimicking portfolios PAV and PAC are used in Column (9)
of Table 6, the explanatory power of the model decreases and none of the risk
factors are significant. Untabulated results show that almost half of the industry
portfolios have significant Bp4y coefficients. Overall, the results suggest that
many industries are significantly exposed to average variance.

In summary, the AAV factor captures the book-to-market and momentum
effects by producing insignificant pricing errors in the cross section of
portfolios sorted by these characteristics. Although AAV does not explain the
cross section of industry portfolios perfectly, there is evidence that AAV is a
useful state variable that outperforms the Fama-French factors.

4.2 Cross section of individual stock returns

In a recent article, Ang et al. (2010) argue that although forming portfolios
produces more precise estimates of factor loadings, it also reduces the precision
of the estimates of the factor risk premia. They suggest that using individual
stocks increases the cross-sectional dispersion in factor loadings and this helps
in estimating more precise factor risk premia. Therefore, in this section, we turn
to individual stock returns to examine the robustness of our previous results.

Column (10) of Table 6 presents estimates of factor risk premia from Equation
(17) using individual stocks and the Fama-MacBeth method with rolling betas.
The factor loadings are estimated from a time-series regression, using the
previous 60 months of data. At least 24 months of monthly observations are
required. Innovations in average variance have a significantly negative price of
risk at —0.22%. For individual stocks, the Ist-percentile AAV beta is —3.36,
while the 99th-percentile AAV beta is 4.10.'* Since the price of AAV risk is
—0.22%, if AAV beta increases from the 1st to the 99th percentile, expected
return will decrease by 1.7%. This number is similar to the one derived from
the set of 25 size-1V portfolios.

The distribution of AAV loadings for stocks is more dispersed than the one for 25 size-1V portfolios. However,
the means of the two distributions are similar. The average AAV beta of 25 size-1V portfolios is 0.02, while the
average AAV beta for a stock is 0.07 (with a median of 0.02).
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In Column (11) of Table 6, we examine whether firm-level 1 V keeps its power
in determining expected returns in the presence of loadings from the model
in Column (10). We also control for other stock characteristics that predict
stock returns: book-to-market, size, and momentum. The book-to-market ratio
of each stock is the ratio available six months prior, size is the log market
capitalization of the firm at the end of the previous month, and momentum is
the stock return over the previous six months. The results in Column (11) show
that innovations in average variance still have a negative and significant price
of risk. The coefficient in front of firm-level /V is not significant.

5. Interpreting the Pricing of Average Variance

In this section, we present additional results to help with the interpretation of the
average variance component of market variance. For this purpose, we examine
further the identity of stock with high 7V, as well as the relation between AV,
measures of aggregate macroeconomic uncertainty, and measures of aggregate
growth options.

5.1 Interpreting the sign of the A AV loadings

In general, we would expect that when average variance goes up overall market
variance increases and drives up the expected market risk premium (Merton
1980). This in turn should increase the discount rate of firms and decrease their
values. Thus, there should be a negative contemporaneous relation between
stock returns and positive shocks to average variance. However, while all
stocks may be negatively affected by increasing market-wide volatility, high
1V stocks are less so. Conditional on their Fama-French betas, high 1V stocks
are good hedges for times of high volatility. Therefore, for the types of stocks
concentrated in these portfolios there must be an additional effect of average
variance on returns that is opposite to the discount rate effect mentioned above.

To understand the source of such an effect, we measure the research
and development (R&D) expenditures of the 25 size-1V portfolios. R&D is
computed as R&D investment divided by total assets. The R&D ratio of a
portfolio is computed as an equally weighted average of the ratios of the stocks
within the portfolio. We drop observations with missing values for R&D. In
month 7, we match 7V estimated in month ¢ — 1 with R&D available for fiscal
year ending in month  — 14 to t —3.

In Figure 3, we report the time-series averages of R&D ratios for the period
from July 1966 to December 2009 for 25 size-IV portfolios. Stocks with
high 7'V have significantly higher R&D expenditure than stocks with low V.
This effect is largest in the smallest quintile, but it holds for all size groups.
Combining this result with the previous observation on factor loadings with
respect to average variance, it follows that high R&D stocks tend to be less
negatively affected by increases in average variance than low R&D stocks.
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Figure 3

Portfolio R&D ratios

This figure reports the time-series averages of R&D expenditure ratios for 25 portfolios sorted by size and
idiosyncratic volatility. Each two-digit number represents a separate portfolio. The first digit refers to the size
quintile (1 being the smallest and 5 the largest), while the second digit refers to the idiosyncratic risk quintile (1
being the lowest and 5 the highest). For each stock, R&D expenditure is measured as R&D investment divided
by total assets. Portfolio-level R&D is an equally weighted average of the R&D ratios of the stocks within the
portfolio. The sample period is from July 1966 to December 2009.

Several authors have suggested that firms with large R&D expenditure have
many real options. Therefore, our finding that high R&D stocks have positive
loadings with respect to average variance is consistent with predictions from
the real options literature. Theoretical models in this literature predict that the
value of a real option should be increasing in the volatility of the underlying
asset (e.g., McDonald and Siegel 1986). Therefore, the value of a firm with
a lot of real options should also be positively related to increasing volatility,
both systematic and idiosyncratic.!> Note that the HM L betas of high (low)
1V portfolios tend to be negative (positive), which suggests that they might be
weighted toward growth (value) stocks.'6

The size of R&D is likely to be correlated with the proportion of firm value
due to investment opportunities, and their growth rates are likely to be more
uncertain than those of existing assets. Thus, the positive AAV betas of high
R&D portfolios are also consistent with a model by Pastor and Veronesi (2003).
Pastor and Veronesi show that there is a positive relation between returns and
changes in volatility, especially for firms with a lot of growth opportunities.

Grullon, Lyandres, and Zhdanov (2012) find empirical evidence that stock returns are contemporaneously
positively correlated with changes in individual stock volatility. This relation is stronger for firms that are
more likely to have more real options and for firms with more irreversible investment opportunities.

Cao, Simin, and Zhao (2008) documented that high 7V stocks tend to have a lot of growth options. They show
that accounting for growth options eliminates or reverses the upward trend in aggregate idiosyncratic volatility.
Their study focuses on the time series of aggregate idiosyncratic risk, while we examine the cross-sectional
pricing of individual idiosyncratic volatility.
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We use another common measure of growth options, the market-to-book
ratio of the firm. Untabulated results for this measure show that portfolios with
high 7'V have higher market-to-book ratios than portfolios with low V.

The evidence in this section suggests that portfolios with high /V have
option-like characteristics. Therefore, the previous finding that correlation risk
is not priced in the cross section of IV portfolios is in line with Driessen et al.
(2009), who show that individual options are not exposed to correlation risk.
The value of growth options should increase when aggregate market volatility
increases. According to Driessen et al. (2009), the increase in the individual
growth option value is driven mostly by the increase in the variance of the
average stock.

To further examine whether the positive contemporaneous relation between
a portfolio return and AAV is partly due to growth options whose value is
increasing in volatility, we look at a cross section of 49 industry portfolios.
We identify industries in which growth options are more likely to represent
larger proportions of firm values. These industries are Fama and French (1997)
industry 22 (electrical equipment), 32 (telecommunications), 35 (computers),
36 (computer software), 37 (electronic equipment), 38 (measuring and control
equipment), 12 (medical equipment), and 13 (pharmaceutical products).!” We
form an equally weighted portfolio of these industries. Similarly, we form an
equally weighted portfolio of the remaining industries. Industries with growth
options should be less negatively affected when average variance increases.
Untabulated results show that the AAV beta of the industry portfolio with
growth options is 0.06 with a z-statistic of 2.91, while the AAV beta of the
other portfolio is —0.01 with a ¢-statistic of —0.75.

5.2 The idiosyncratic volatility effect during the recent financial crisis
During the recent financial crisis, market volatility increased dramatically. Our
previous discussion suggests that during such times a strategy that invests
in high IV stocks and shorts low IV stocks would have provided a good
hedge against rising volatility. In this section, we examine the validity of this
prediction. To do that, we use daily returns for the 25 size-1V portfolios for the
period from January 2008 to June 2009 (377 daily observations). This period
is classified as the last recession experienced by the U.S. market according to
NBER. We split this recessionary period into two parts. The first part is from
January 2008 to September 2008, and it is characterized by relatively lower
values of the VI X index. The second part is from October 2008 to June 2009,
and it is characterized by very high levels of VIX. We compute the average
daily returns and volatilities of 25 size-1 V portfolios in each period. The results
are reported in Table 7.

We use theoretical and empirical studies to identify potential industries with growth options (e.g., Majd and
Pindyck 1987; Bollen 1999).
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Table 7
The idiosyncratic volatility effect during the crisis: January 2008—June 2009
Low IV 2 3 4 High IV Low IV 2 3 4 High IV
Panel A: Period of low VIX (2008:01-2008:09)
R 14
Small —0.02 —0.07 -0.09 —0.12 -0.12 1.36 1.72 1.82 1.92 1.91
2 0.00 —-0.01 -0.05 -0.09 -0.13 1.52 1.87 193  2.08 229
3 0.00 —-0.05 -0.05 —0.10 —0.11 1.44 1.67 1.82 1.97 230
4 —0.05 —0.05 -0.09 —0.12 -0.14 1.20 1.58 1.78  2.04 255
Large —0.06 —0.08 —0.10 —0.08 —0.19 1.37 1.52 1.56 220 278
Panel B: Period of high VX (2008:10-2009:06)
R o
Small —0.02 0.07  0.06 0.11 0.24 2.75 3.68 396 4.02 430
2 —0.07 —0.08 —0.03 —0.01 0.13 2.86 345 375 410 4091
3 —0.07 —0.11 -0.09 0.00 0.10 2.67 3.17 353 3838 4091
4 —0.07 —0.04 -0.05 -0.05 0.07 2.48 290 324 379 484
Large —0.06 —0.03 —-0.06 —0.06  0.00 2.44 2,63 304 337 470

This table presents average daily returns and daily volatilities of 25 portfolios sorted by size and idiosyncratic
volatility. Panel A refers to the period from January 2008 to September 2008 when the V I X index was below its
average value for the 2008-2009 period. Panel B refers to the period from October 2008 to June 2009 when the
VIX index was above its average value for the 2008-2009 period.

Panel A of Table 7 shows that during the low VI X period, high IV stocks
underperformed low IV stocks in terms of average daily returns. In contrast,
Panel B shows that during the high V I X period, high 7V stocks did better than
low IV stocks in terms of average daily returns. In both cases, it is hard to
judge the difference in performance given the large volatilities of daily returns.
However, the evidence suggests that high 1V stocks did better than low IV
stocks in a state of the world characterized by rising variance. Untabulated
results show that high (low) 7'V stocks have positive (negative) loadings with
respect to VI X, after controlling for their Fama-French betas, for the period
January 2008 to June 2009.

Finally, in Figure 4, we plot the cumulative returns of the market portfolio
and the small high-minus-low IV portfolio for the period January 2008 to
June 2009, using their daily returns. The small high-minus-low IV return is
constructed as the difference between the high and low 7 V return in the smallest
quintile. The results show that an investment of 1 dollar in the market portfolio
in January 2008 would have decreased to 67 cents by the end of June 2009,
for a total return of —33%. In contrast, a similar investment in the small high-
minus-low IV portfolio would have appreciated to 1.3 dollars, for a total return
of 30%. The figure shows that when the V I X index increased dramatically, the
1V strategy did not experience as large of a decline as the market strategy.

5.3 Relation between average variance and other state variables

Next, we suggest an economic interpretation behind the cross-sectional pricing
of average variance. In particular, we relate AV to aggregate liquidity, the
variance of consumption growth, and the aggregate market-to-book ratio. These
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Figure 4

Cumulative returns: January 2008-June 2009

This figure plots the cumulative returns of the market portfolio (solid line) and the small high-minus-low 7V
portfolio (dotted line) for the period January 2008 to June 2009 using daily returns. The small high-minus-low
1V return is constructed as the difference between the high 7V return in the smallest size group and the low IV
return in the smallest size group.

are important state variables for stock returns, and there are reasons to believe
that these variables are related to average variance.

Variance and liquidity could be related since high volatility indicates
uncertainty, which in turn implies information asymmetry. As a result, adverse
selection costs and inventory risk in trading increase and risk-bearing capacity
decreases. In the models of Gromb and Vayanos (2002) and Brunnermeier and
Pedersen (2009), higher variance predicts less available risk-bearing capacity.
In these models, lower risk-bearing capacity leads to lower liquidity. Motivated
by these models, we examine the relation between AV and aggregate liquidity.
We compute the Pastor and Stambaugh (2003) measure of market-wide liquidity
for the period from July 1963 to December 2009 and denote it as L7 Q. High
values of LI Q correspond to high market-wide liquidity.

Standard models about the behavior of aggregate stock prices identify
changes in the conditional variance of fundamentals as a major source of
fluctuations in asset prices. For example, Bekaert et al. (2009) show that
countercyclical changes in the variance of consumption growth drive the
countercyclical volatility of aggregate returns.'® Motivated by their model and
the observation that AV tends to increase in recessions (see Figure 1), we
examine the relation between average variance and the variance of consumption
growth.

Other studies that examine the effects of macroeconomic uncertainty on asset prices and equity premia include
Kandel and Stambaugh (1990) and Bansal and Yaron (2004), among others.

2778

210z ‘8z snbny uo A1sleAlun ealbojouyos | BuelueN e /6.10°'seuinolploixos//:dny wouy pepeojumoq


http://rfs.oxfordjournals.org/

20

Does Idiosyncratic Volatility Proxy for Risk Exposure?

We obtain quarterly data on seasonally adjusted real consumption from the
NIPA tables of the Bureau of Economic Analysis. Aggregate consumption
is defined as expenditures on non-durables and services. The growth rate of
consumption for quarter ¢, Ac;, is constructed by taking the first difference of
the log consumption series. We follow the approach of Bekaert et al. (2009)
and estimate the following system for the conditional mean and variance of
consumption growth:

E_1(Ac)=apo+a1 X,

Var_1(Ac)=bo+bi Xi—1, (20)

where X,_; is a vector of explanatory variables known at the end of quarter
t — 1, which includes the T-bill rate, dividend yield, and term spread, estimated
at quarterly frequency.'® The system of equations in (20) is estimated via
GMM. The fitted value from the second equation in (20) is the estimate of
the conditional variance of consumption growth, CV. To match the quarterly
estimates of CV with monthly data, each month within the same quarter we
use repeated values equal to 1/3 of the quarterly variance of consumption
growth. Alternatively, we compute quarterly portfolio returns and run quarterly
regression tests, which produce similar results.

Several authors show that both systematic and idiosyncratic variance are
related to the growth opportunities of the firm (e.g., Berk, Green, and Naik 1999;
Cao, Simin, and Zhao 2008; Bekaert, Hodrick, and Zhang 2010). Motivated by
these studies, we examine the relation between AV and the aggregate market-
to-book ratio, M B. The M B ratio is a proxy for corporate growth options since
the market value of assets captures expectations of future growth opportunities
within the firm while book value does not. We compute M B as the value-
weighted average of firm-level market assets over book assets.

Next, we run contemporaneous time-series regressions of AV on the three
variables discussed above, LI Q, CV, and M B, to determine the strength of
their relationships. The results indicate that movements in AV are positively
related to variation in C'V and M B, and negatively related to variationin L1 Q.
The relation between AV and M B is the strongest. More details are available
in Appendix C.

Average variance increases when aggregate liquidity drops and macroeco-
nomic uncertainty rises. It also increases when the aggregate value of growth
options goes up. Therefore, high AV could arise from factors that are generally
considered to decrease welfare, as well as from factors that are related to
innovation and opportunities for growth.2? The latter channel may explain the

Bekaert et al. (2009) use the same variables in the variance equation, but they use only the consumption-dividend
ratio (or just a constant) in the mean equation. We have tried a similar specification and found the resulting
Var;_1(Acy) series to be very highly correlated with the main one we use.

Bartram, Brown, and Stulz (2011) argue that return volatility can be high for reasons that contribute positively
or negatively to shareholder wealth and economic growth. Therefore, they distinguish between good and bad
volatility.
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Table 8

Cross-sectional regressions: Liquidity, variance of consumption growth, and

market-to-book

Full-sample betas Rolling betas
@ ()] 3 “
) -0.23 —0.19 0.23 0.19
(—2.48) (—2.09) (3.59) (2.96)
M 0.63 0.57 0.23 0.27
(2.80) (2.57) (1.05) (1.23)
YHML 0.93 0.84 0.33 0.40
(4.13) (3.41) (1.94) (2.47)
YSMB 0.22 0.27 0.04 0.06
(1.34) (1.72) (0.25) (0.40)
YAAV* -3.23 —2.58
(=2.51) (—3.88)
VAAY** —5.06 —2.31
(—4.54) (—3.45)
YAAC —5.94 —2.21 0.91 —0.55
(—1.12) (—0.96) (1.85) (—1.07)
R? 0.61 0.76 0.59 0.55

This table presents Fama-MacBeth regressions using the excess returns of 25 portfolios
sorted by size and idiosyncratic volatility. The factor betas, which are the independent
variables in the regressions, are computed either over the full sample (full-sample betas) or
in 60-month rolling regressions (rolling betas). Columns (1) and (3) present results for the
Fama-French model augmented with innovations in average variance (AAV*) and average
correlation (AAC). The AV* factor is the component of average variance, AV, projected
on the aggregate market-to-book ratio. Columns (2) and (4) present results for the Fama-
French model augmented with innovations in average variance (AAV**) and average
correlation (AAC). The AV** factor is the component of total AV projected on aggregate
liquidity, the variance of consumption growth, and the aggregate market-to-book ratio. The
adjusted R2 follows Jagannathan and Wang (1996). The #-statistics are in parentheses and
adjusted for errors-in-variables, following Shanken (1992). All coefficients are multiplied
by 100, and the market portfolio, HM L, and SM B are included among the test assets. The
sample period is from July 1966 to December 2009.

partial negative relation between AV and expected market returns documented
in Table 1. The high positive correlation between AV and aggregate growth
options may be the reason why AV is a negative predictor of future market
returns.

Finally, we examine whether the pricing ability of AV is due to its correlation
with liquidity, the variance of consumption growth, and the aggregate market-
to-book ratio. We compute the projection of AV on M B and denote itas AV™,
and we compute the projection of AV on CV, LI Q, and M B and denote it as
AV**_We choose to examine A V™ first because of the high correlation between
average variance and market-to-book. We estimate the system of Equations
(16)—(17) for 25 size-1V portfolios, replacing A AV with the newly constructed
ANAV* or AAV*,

Table 8 presents the results. Column (1) reveals that for full-sample betas,
the price of risk for AAV* is significantly negative. However, the explanatory
power of the model is lower than that when the AAV factor is used. Therefore,
the relation between M B and AV contributes to the pricing ability of the AAV
factor, but does not explain it completely.
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Column (2) of Table 8 shows that the price of risk for AAV** is also
significantly negative. The cross-sectional R? is close to the one reported
previously for the main model (Column (3) of Table 3). This finding suggests
that the relation between AV and C'V and L1 Q contributes to the pricing ability
of the AAV factor over and above M B.?!

Columns (3) and (4) of Table 8 present similar results for rolling betas.
However, the pricing errors of the models are significant and the R?s are lower
than the ones reported when total AAV is used. This suggests that average stock
variance subsumes and exceeds the pricing abilities of liquidity, consumption
variance, and M B. There seems to be additional information in AV that matters
for stock returns.

6. Alternative Explanations for the Idiosyncratic Volatility Puzzle

Recent studies have offered alternative explanations for the IV effect
documented by AHXZ. Here, we review these studies and compare their
results to ours. We summarize only the main findings. Tabulated results are
in Appendix D.

6.1 Lagged and contemporaneous idiosyncratic volatility

Our main results are about the negative relation between idiosyncratic volatility
at time ¢ and returns at time 7+ 1. A recent article by Sonmez (2009) claims
that it is the change in /V from ¢ to r+1 that predicts returns at time ¢+1.
More specifically, stocks that move from low / V quintiles at time ¢ to high IV
quintiles at time 7+ 1 earn high average returns. Stocks that move from high 7V
quintiles at ¢ to low IV quintiles at z+1 earn low average returns. For stocks
that stay in the same IV quintile at times ¢ and ¢+ 1, idiosyncratic volatility is
positively related to average returns. Therefore, Sonmez (2009) suggests that
it might be realized /V at time ¢+ 1 that is related to returns.

In this section, we examine more closely the relation between IV, (lagged
IV)and IV, (contemporaneous / V) and stock returns at z+ 1. AHXZ (2009)
state that estimates of the realized mean and realized variance of returns are
positively correlated because stock returns are positively skewed. Therefore,
to study the relation between contemporaneous / V and stock returns, we have
to look at log returns. The predictive relation between lagged / V and returns is
not affected by using log returns to measure / V. It is only the contemporaneous
relation between realized returns and realized volatility that is affected by the
skewness of stock returns.

Because of the effect of skewness, we consider the IV of log returns. We
form two sets of portfolios. First, we sort stocks by /V,,; and then by IV,.
Second, we sort stocks by IV, and then by /V,,;. The two dependent sorts

21 Appendix C examines the separate pricing of CV and LI Q in the cross section of returns.
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disentangle the effects of lagged versus contemporaneous / V on stock returns.
Overall, the results suggest that controlling for 7 V;,; does not explain the 1V,
puzzle.

We examine whether the Fama-French model augmented with AAV and
AAC can explain the difference in average returns for the two sets of portfolios
discussed above. The results show that for both sets of portfolios, AAV betas
are significant determinants of their expected returns. Portfolios with high (low)
1V, and I'V;,; have positive (negative) AAV betas.

6.2 Lagged and conditional idiosyncratic volatility

Fu (2009) points out that AHXZ’s 'V, might not be a good proxy for E,(I V;1)
since it is not a random walk. AHXZ (2009) use a different estimate of expected
1V, based on a model that contains lagged 1V, size, book-to-market, past six-
month return, skewness, and turnover. They show that, controlling for expected
1V, lagged IV still predicts future returns.

Following up on AHXZ (2009), we construct a different measure of 7 V based
on rolling 36-month Fama-French regressions. That is, each month, returns are
matched to /V measured as the standard deviation of the residuals from the
Fama-French model run over the previous 36 months using monthly data. This
estimate of IV, denoted as I V3¢, does look like a random walk, and so, it avoids
Fu’s criticism. We find that I V34 is still negatively related to average returns
in each size quintile. The cross-sectional pricing of the size-I V3¢ portfolios
reveals that their AAV betas are significant variables in the cross section.

6.3 Idiosyncratic volatility and maximum daily return

Bali et al. (2011) show that the maximum daily return over the past one month,
M AX, is negatively related to stock returns in the cross section. Since stocks
with high M AX in a given month also have high /V measured over the same
month, Bali et al. (2011) test whether M AX is a proxy for the IV effect. For
value-weighted portfolios, they show that after controlling for M AX, high IV
stocks still have lower average returns than low I V' stocks, but the magnitude of
the 1V effectis significantly reduced. However, for equally weighted portfolios,
high 7'V stocks have higher average returns than low 7'V stocks after controlling
for MAX.

First, we show that the findings in Bali et al. (2011) for equally weighted
portfolios do not appear to be robust. In particular, we exclude penny stocks
from the sample and construct 25 equally weighted portfolios sorted by M AX
and then sorted by /V. The IV effect is still negative and significant in the
two highest M AX quintiles. We test whether the AAV factor is priced in the
cross section of these portfolios and find that it is negative and significant in
the case of rolling betas.

Second, the existence of the M A X effect is not necessarily inconsistent with
our explanation for the 1V puzzle. According to Bali et al. (2011), firms with
high M A X have arelatively small probability of a large payoff. Therefore, they
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could also be firms that have very uncertain growth rates. Such firms are likely
to have more investment opportunities relative to existing assets than firms
with more certain growth rates. The size of R&D expenditure is likely to be
correlated with the proportion of firm value due to investment opportunities.
Therefore, we compute the R&D expenditures for five portfolios sorted by
M AX. Untabulated results show that high M AX stocks have higher R&D
than low M AX stocks. This suggest that the variable M AX may be another
way of identifying stocks with uncertain growth rates and many growth options.

6.4 Idiosyncratic volatility and return reversals

Fu (2009) and Huang et al. (2010) show that return reversals from stocks with
high IV in the last month lead to AHXZ’s results. If the IV puzzle is driven by
short-term return reversals, it is likely that the IV effect will be much weaker
or even non-existent one or two months after portfolio formation. We show
that the 7V effect continues for about seven months after portfolio formation.
Furthermore, we find that the A AV loadings of high (low) IV stocks continue
to be positive (negative) several months after portfolio formation. Overall, the
results suggest that short-term return reversals cannot explain the /V puzzle
and its persistence several months after portfolio formation.

6.5 Idiosyncratic volatility and skewness
Boyer, Mitton, and Vorking (2010) find that expected idiosyncratic skewness

is negatively related to stock returns. They show that expected idiosyncratic
skewness and IV seem to have independent effects on average returns.
Furthermore, their estimate of expected idiosyncratic skewness contains 1V
as an explanatory variable. This suggests that it is not entirely clear how
to disentangle the two measures. To the extent that the presence of growth
options induces positive skewness in returns (e.g., Andres-Alonso et al. 2006;
Haanappel and Smit 2007), our explanation for the 1V puzzle is not necessarily
inconsistent with the results reported by Boyer et al. (2010). Firms with high
skewness are likely to have growth options, and therefore, positive loadings in
A AV . This makes them good hedges of volatility risk and lowers their expected
returns.

6.6 Innovations in idiosyncratic volatility
Grullon, Lyandres, and Zhdanov (2011) and Bali, Scherbina, and Tang (2011)

find that innovations in idiosyncratic volatility, AIV,,, are positively related
to contemporaneous stock returns. Grullon et al. (2011) show that this result is
stronger for firms with a lot of growth options. Bali et al. (2011) find that the
relationship reverses in the future. Both of these findings are consistent with our
explanation for the existence of the IV puzzle. An increase in volatility (both
systematic and idiosyncratic) is likely to increase the value of growth options,
leading to the positive contemporaneous relation between AIV,,; and R,,;.
Firms with growth options are therefore hedges for rising volatility, leading to
their lower expected returns.
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Conclusion

We provide a rational explanation for the existence of the idiosyncratic volatility
puzzle documented by AHXZ (2006, 2009). Since idiosyncratic volatility is
usually measured as the standard deviation of the residuals from the Fama-
French model, it is model dependent. If a risk factor is missing from the model,
idiosyncratic volatility may appear to be priced simply because it proxies for a
risk exposure with respect to the missing factor. We identify the factor missing
from the Fama-French model as average stock variance. Investors are willing
to pay an insurance premium for high idiosyncratic volatility stocks since their
payoff is high when return variance is large, conditional on their market betas.

We show that innovations in average stock variance represent a priced risk
factor in the cross section of stock returns. The price of risk for average variance
is negative. This implies that rising variance signals deterioration in investment
opportunities. We find that portfolios with high (low) idiosyncratic volatility
relative to the Fama-French model have positive (negative) loadings with
respect to innovations in average variance. This difference in the loadings,
combined with a negative price of risk for average variance, explains the
idiosyncratic volatility puzzle of AHXZ. In the presence of loadings with
respect to innovations in average variance, individual idiosyncratic volatility
does not affect expected returns.

We provide an economic interpretation for the pricing of average variance.
The results suggest that it is related to aggregate liquidity, the variance
of consumption growth, and the aggregate market-to-book ratio. Therefore,
average variance could be interpreted as a risk factor measuring economic
uncertainty, and also an indicator for the prevalence of aggregate growth
options.

AHXZ (2009) show that the idiosyncratic volatility puzzle is present across
23 developed markets. In addition, they document a strong comovement in the
low returns to high idiosyncratic volatility stocks across countries, suggesting
that broad, not easily diversifiable, factors may lie behind this phenomenon. A
possible extension of the current article is to examine whether the source of these
common movements across countries is economic uncertainty as measured by
average stock variance.
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