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Abstract

We present a theory of endogenous coalition formation in financial markets, which

highlights the information sharing and market competition features of coalitions.

Allied members enjoy benefits of information advantage and monopolistic power in

trading, but forming coalitions incurs direct costs of setting up coalitions and indirect

costs from market liquidity dry-ups. Such a trade-off determines the coalition struc-

ture of the economy. As allied members behave more monopolistically, coalitions

have negative effects on price informativeness and market liquidity. From the infor-

mation perspective, financial intermediaries (e.g., asset management companies in
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the mutual fund industry) can be viewed as coalitions of of market players (e.g., fund

managers). Our theory provides novel insights about the structure of this industry.
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1 Introduction

Numerous empirical evidence suggests that networks facilitate information sharing and

coordination among market participants.1 Existing theories on networks in financial mar-

kets, including Colla and Mele (2010), Ozsoylev and Walden (2011), Han and Yang (2013),

Cao and Ye (2014), and Hollifield et al. (2017) treat these networks as exogenously given

and proceed to examine their implications for financial market outcomes. In contrast,

working from an information sharing and market competition perspective, we present a

theory of endogenous coalition formation decisions by market players to study the coali-

tion structure. We try to address the following questions. What kind of players, for

example, well-informed traders or poorly-informed traders, tend to join a coalition? How

many investors will join a coalition? As the advance of information technology expedites

information processing and dissemination, how does it affect the coalition size (which is

measured by the number of investors in a coalition) and the number of coalitions in the

economy?

A natural framework to study coalition formation in financial markets is a multi-trader

generalization of Kyle (1985).2 The elements are a risky asset (the stock), multiple in-

1Networks could be loosely formed by the cultural, educational, religious, or even geographical reasons,
or well organized ones like mutual fund managers in the same fund family. For example, Grinblatt and
Keloharju (2001) find that investors are more likely to hold, buy, and sell stocks of firms that are located
close to them, that communicate in their native tongue, and that have chief executives of the same cultural
background. Hong et al. (2004) find that social households-those who interact with their neighbors, or
attend church-are more likely to invest in the stock market when their peers participate. Hong et al.
(2005) find that mutual fund managers are more likely to buy or sell a particular stock if other managers
in the same city are buying or selling that stock, which suggests that investors spread information about
stocks to one another by word of mouth. Ivković and Weisbenner (2007) find that households are more
likely to buy stocks from an industry if their neighbors are buying stocks from the same industry. Cohen et
al. (2008) find that mutual fund managers are more likely to buy stocks of firms that have board members
of the same education background. Nanda et al. (2004), Gaspar et al. (2006), Elton et al. (2007), and
Bhattacharya et al. (2013) show that sibling mutual funds in the same family tend to coordinate trades.

2Kyle’s (1985) setup provides analytical tractability and has been used extensively in the microstructure
literature (e.g., Holden and Subrahmanyam, 1992; Foster and Viswanathan, 1996; and Back et al., 2000).
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formed traders, a market maker, and a liquidity trader. We modify this framework by

allowing informed traders to endogenously choose whether to form a coalition with other

informed traders, in which case they will combine resources so that they not only share

information but also coordinate trades. The benefit of forming a coalition is that allied

members gain information advantage and monopolistic power in trading. However, the

coalition has two types of costs. First, there can be direct costs, such as costs related

to search, setup, and coordination efforts. Second, there can be an indirect cost. As the

coalition gains monopolistic power and behaves more strategically, the market maker low-

ers market liquidity to break even. This dries up market liquidity. Thus, in our model,

whether to form a coalition is an endogenous decision that informed traders make after

weighing the benefits and costs. It is possible that all informed traders form a comprehen-

sive coalition. It is also possible that some informed traders form several smaller coalitions,

while other informed traders choose to remain independent.

A simple cost-benefit analysis suggests that for a coalition to prevail, it must signif-

icantly improve the allied members’ information advantage and/or reduce competition.

The main results of our model on the coalition structure are consistent with this intuition.

First, a coalition is likely to be formed by informed traders with the best-quality infor-

mation. Second, a coalition, if formed, must be sufficiently large. Third, as the average

information quality increases, the coalition size (i.e., the number of informed traders in a

coalition) increases and, accordingly, the number of coalitions decreases. Fourth, if there

are different groups of informed traders living in separate “islands,” so they can form

coalitions only within each group, then a small number of large coalitions are likely to

emerge from the group of informed traders with good-quality information and the group

of informed traders with a large population.3

3This separate “island” setup is often used by the social-network literature (see Jackson, 2010, for a
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We further use our model to obtain new insights about the industry structure of fi-

nancial intermediaries. From the information perspective, financial intermediaries can be

viewed as sets of coalitions. Particularly, an asset management company in the mutual

fund industry can be viewed as a coalition of several fund managers.4 Our model im-

plies that a big asset management company is likely to include fund managers with the

best-quality information. Therefore, mutual funds affiliated with big asset management

companies tend to outperform those affiliated with small asset management companies.5

Moreover, as the advance of information technology expedites information processing and

dissemination, which improves the average information quality, in recent decades, industry

consolidation has led to the emergence of super big asset management companies such as

BlackRock. Finally, big asset management companies tend to arise in metropolitan areas

in which there is a large population and investors receive good-quality information. Areas

that fit the description include Boston, Chicago, New York, Philadelphia, Los Angeles,

and San Francisco.

Our study belongs to the growing literature on networks in financial markets. Existing

theories, including Colla and Mele (2010), Ozsoylev and Walden (2011), Han and Yang

(2013), Cao and Ye (2014), and Hollifield et al. (2017) assume that informed traders

share information through exogenously given networks, and examine the implications of

networks for financial market outcomes. We depart from the literature by allowing market

players to choose endogenously whether to form coalitions after weighing the benefits and

survey).

4Consistent with this view, Bhojraj et al. (2012) show that sibling mutual funds in the same company
tend to share information. Nanda et al. (2004), Gaspar et al. (2006), Elton et al. (2007), and Bhattacharya
et al. (2013) show that sibling mutual funds in the same company tend to coordinate trades.

Other financial intermediaries can also be viewed as sets of coalitions. For example, a brokerage house
can be viewed as a coalition of financial analysts.

5This is consistent with the empirical findings of Chen et al. (2004), Pollet and Wilson (2008), and
Bhojraj et al. (2012).
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costs. Our analysis is focused on the coalition structure of the economy.

Our prediction on the implication of information networks for financial market out-

comes also differs from those of existing theories. In our model, coalitions increase in-

formed traders’ monopolistic power. As they trade more strategically, the informational

efficiency of stock prices and market liquidity decrease. In contrast, in Colla and Mele

(2010) and Ozsoylev and Walden (2011), information networks lower informed traders’

monopolistic power. As informed traders trade more competitively, the informational ef-

ficiency of stock prices and market liquidity improve. Han and Yang (2013) show that

investors may find it too costly to acquire information by themselves if they can free-ride

peers through connections. Thus, networks can lower the total amount of information in

the financial markets and, thereafter, the informational efficiency of stock prices. Empiri-

cally, their prediction of the negative effect of networks on the informational efficiency of

stock prices mostly applies to small stocks, young stocks, and risky stocks, among which

information acquisition costs are high.

Our study is also related to the economics literature on strategic network formation.6

Existing theories on network formation of financial institutions are predominantly focused

on the banking sector.7 Little is known about network formation in other sectors such

as the mutual fund industry. Our study fills the void. We argue that asset management

companies in the mutual fund industry can be viewed as coalitions endogenously chosen

by fund managers in pursuit of information advantage and monopolistic power in trading.

This intrepretation fits some important aspects of this industry. Our model provides novel

insights about the structure of this industry.

6For theories in general settings, see, for example, Jackson and Wolinsky (1996), Bala and Goyal (2000),
and Hojman and Szeidl (2006, 2008). Jackson (2010), and Allen and Babus (2009) provide excellent
surveys.

7See, for example, Blume et al. (2011), Allen et al. (2012), Cabrales et al. (2012), Acemoglu et al.
(2013), Babus (2013), Zawadowski (2013), Bluhm et al. (2013), and Farboodi (2015).
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Existing theories on delegated asset management, including Ou-Yang (2003), Palomino

and Prat (2003), Gervais et al. (2005), Dybvig et al. (2010), Vayanos and Woolley (2013),

and He and Xiong (2013), are focused on the design of the optimal contracts to incentivize

fund managers to alleviate the agency problem at the fund level. They typically assume

that fund managers work for the asset management companies, the structure of which is

given exogenously.

We organize the rest of the article as follows. Section 2 describes our model. Section 3

solves for the equilibrium and then derives its properties. Section 4 applies the predic-

tions of our model to study the industry structure of financial intermediaries. Section 5

concludes.

2 The Model

We develop our model based on a multi-trader generalization of Kyle (1985). Consider a

simple exchange economy. There are three dates, -1, 0, and 1. There is one risky asset, a

stock. The stock pays F̄ +X at date 1. F̄ is a positive constant. X is a random variable

that follows a standard normal distribution; that is, X ∼ N(0, 1). The stock price at date

0 is denoted as P , which is to be determined.

There are three types of risk-neutral players. First, there are J informed traders. At

period 0, each informed trader, indexed by j, observes a private signal about the payoff

of the stock, Sj = X + εj. εj follows a normal distribution with mean zero and variance

vj; that is, εj ∼ N(0, vj). She submits a market order, Dj, which is to be determined. We

assume that ∀i 6= j, εi is independent of εj.

Second, there is a liquidity trader. She submits a market order, Z, which follows a

normal distribution with mean zero and variance σ2
z ; that is, Z ∼ N(0, σ2

z). We assume

that Z is independent of X and εj, ∀j.
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Third, there is a market maker. She receives the aggregate market order, D =
∑

j Dj +

Z, and sets the stock price, P . The market maker faces perfect competition from other

market makers, so she has zero expected profits. This implies that P = F̄ + E
[
X|D

]
.

The novel feature of our model is that at date -1, informed traders decide whether to

ally with peers. If they do, then they not only exchange information truthfully but also

coordinate trades. A coalition, which does not necessarily include all informed traders, is

indicated by a set A.

Here we assume that within a coalition, informed traders will tell each other their

information truthfully. There are various mechanisms to ensure this. Take the coalition

formed among neighbors or alumni as an example. There can be a severe reputation loss if

a member is caught in a lie. It is also possible that allied members’ payoffs are aligned, so

they have no incentives to lie. This tends to happen among professional money managers

in the same asset management company because their compensations are often partially

linked to company performance. Finally, some institutional features might prevent such

deviation activities. For example, the SEC prohibits cross trades between sibling funds in

the same family that may cause conflicts of interests.

Coordination of trades is a key ingredient of our model. Stein (2008) points out that

in general, if informed traders cannot coordinate trades, then they will not exchange

information either. The intuition for this is that information exchange will lower their

information advantage. What’s more, receivers of this information may even use it when

trading against those who provided it. Colla and Mele (2010) explain this intuition in

more details. They argue that private information gives informed traders monopolistic

power. If informed traders exchange information but don’t coordinate trades, then their

monopolistic power weakens, so they will trade more aggressively to preempt peers. It can

be shown that their payoff will decrease. Therefore, they will not exchange information in
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the first place.

Forming a coalition, A, causes direct costs, C(A), due to search, setup, and coordination

efforts. In general, C(A) increases with the extent and complexity of the coalition, A, which

can be measured using the number of informed traders in the coalition. Allied members

in the coalition share the costs and benefits of the coalition based on the Shapley (1953)

value, which captures their contributions to the coalition. In our model, an allied member’s

Shapley value is proportional to her information precision, 1/vj.

We summarize the timeline of our model as follows.

Date -1: (Coalition Formation Stage) Informed traders decide whether to form a coali-

tion, A, which does not necessarily include all informed traders.

Date 0: (Trading Stage) Each informed trader, j, receives her private information, Sj.

Informed traders in the coalition, j ∈ A, share their private information, Sj, and

coordinate trades. The coalition submits a market order, DA. Each independent

informed trader, j 6∈ A, submits a market order, Dj, based on her private

information, Sj. The liquidity trader submits a market order, Z. After receiving

the aggregate market order, D = DA +
∑

j 6∈ADj +Z, the market maker sets the

stock price, P .

Date 1: (Final Stage) The stock pays F̄ + X, which is distributed to every player ac-

cording to her holdings.

In our model, whether to form a coalition so that they can exchange information and

coordinate trades is an endogenous decision that informed traders make after weighing the

benefits and costs. It is possible that all informed traders form a comprehensive coalition.

It is also possible that some informed traders form several smaller coalitions, while other

informed traders choose to remain independent.

9



3 The Equilibrium

We solve for the equilibrium using backward induction. In Section 3.1, we focus on the

trading stage at date 0. We suppose that a coalition, A, has already been formed and solve

for every player’s optimal trading strategy. Our analysis can easily be extended to include

multiple coalitions. In Section 3.2, we focus on the coalition formation stage at date -1,

where we study what kind of informed traders form a coalition, how big a coalition can

be, and how many coalitions can be formed.

3.1 Trading Stage

3.1.1 Trading with No Coalition

Before jumping to the case with coalitions, we first study a benchmark case in which there

is no coalition, so all informed investors compete against each other.

Proposition 1. Consider the case with no coalition of informed traders, which is denoted

by (NA). There is a linear equilibrium in which the market maker sets the stock price

according to P (NA) = F̄ + λ(NA)D, and each informed trader submits a market order

Dj(NA) = θj(NA)Sj. λ(NA) and θj(NA) are given by:

λ(NA) =
K(NA)/σz

1 +
∑
j

1

1 + 2vj

,

θj(NA) =
σz/K(NA)

1 + 2vj
,

where K(NA) =

√√√√∑
j

1 + vj
(1 + 2vj)2

.

Proof: See the Appendix.
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To understand this equilibrium, we consider the following special case, which Holden

and Subrahmanyam (1992) have studied. The intuitions we obtain in this special case help

us understand the equilibrium when there are coalitions of informed traders.

A special case: Let vj = V , ∀j, so every informed trader has the same-quality infor-

mation. Denote the informativeness of the stock price as Var(X|P ). It is straightforward

to show that

Var(X|P (NA)) =
1

1 + J/(1 + 2V )
,

θj(NA) =
σz√

J(1 + V )
,

λ(NA) =

√
J(1 + V )/σz

1 + 2V + J
.

A decrease in J has three consequences. First, the informativeness of the stock price

decreases (high Var(X|P )). There are two reasons for this. One reason is that as J de-

creases, the sources of information decrease, which lowers the total amount of information

in the market. The other reason is that there is less competition among informed traders,

so they behave more monopolistically. Their trades reveal less information to the mar-

ket. Second, informed traders trade more aggressively (high θj). This is because as the

competition decreases, informed traders are less subject to the winner’s curse problem.

Third, market liquidity decreases (high λ) for sufficiently large J , such as J > 1 + 2V .

This is because as informed traders behave more monopolistically, the market maker must

increase λ to break even.

An increase in informed traders’ information quality (i.e., V decreases) also has three

consequences. First, the price informativeness increases (low Var(X|P )). This is because

informed traders reveal more precise information through trades to the stock price. Second,
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informed traders trade more aggressively (high θj). This is because they are more confident

in their own information. Third, market liquidity decreases (high λ) if informed traders’

information is not very precise, such as 3 + 2V > J . This is because the market maker

faces a more severe information disadvantage and must increase λ to break even.

3.1.2 Trading with a Coalition

Suppose that a coalition of some informed traders, A, has been formed. Denote

SA =

∑
j∈A

Sj

vj∑
j∈A

1

vj

= X + εA.

εA =

∑
j∈A

εj
vj∑

j∈A

1

vj

follows a normal distribution with mean zero and variance vA = 1
/∑

j∈A

1

vj
;

that is, εA ∼ N(0, vA).

Lemma 1. As far as X is concerned, SA is a sufficient statistic of {Sj : j ∈ A}.

Proof: See the Appendix.

An implication of this lemma is that we can treat the coalition, A, as one informed

trader who observes a private signal SA. In the following proposition, we use this idea to

describe the coalition’s demand for the stock.

Proposition 2. Consider the case with a coalition of informed traders, which is denoted

by (A). There is a linear equilibrium in which the market maker sets the stock price

according to P (A) = F̄ +λ(A)D, the coalition submits a market order DA(A) = θA(A)SA,
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and every other informed trader, j 6∈ A, submits a market order Dj(A) = θj(A)Sj. λ(A),

θA(A), and θj(A) are given by:

λ(A) =
K(A)/σz

1 +
1

1 + 2vA
+
∑
j 6∈A

1

1 + 2vj

,

θA(A) =
σz/K(A)

1 + 2vA
,

θj(A) =
σz/K(A)

1 + 2vj
, ∀j 6∈ A,

where K(A) =

√√√√ 1 + vA
(1 + 2vA)2

+
∑
j 6∈A

1 + vj
(1 + 2vj)2

.

Proof: See the Appendix.

The following corollary describes the monotonic properties of the equilibrium with

respect to the coalition size.

Corollary 1. Suppose that the coalition expands from A to A′, where A′ = A ∪ {b} and

b 6∈ A. Then,

(i) the stock price becomes less informative; that is, Var(X|P (A′)) > Var(X|P (A));

(ii) market liquidity decreases; that is, λ(A′) > λ(A);

(iii) informed traders bid more aggressively; that is, θA′(A′) > θA(A) and θj(A
′) > θj(A),

∀j 6∈ A′.

Proof: See the Appendix.

Intuitively, the expansion of the coalition reduces the effective number of informed

traders. Then, as the special case in the last subsection suggests, this reduces the intensity
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of competition among informed traders. As informed traders both inside and outside

the coalition behave more monopolistically, they trade more aggressively but release less

information to the market. Therefore, the stock price becomes less informative. The

market maker must increase λ, the sensitivity of the stock price to the market order she

receives, to break even. This lowers market liquidity.

Corollary 1 suggests that networks, in the form of coalitions, in the financial markets

can have negative effects on the informativeness of stock prices and on market liquid-

ity. This market liquidity dry-up represents an indirect but important cost of forming a

coalition.

3.2 Coalition Formation Stage

To study the coalition formation, we need to look at the effects of a coalition of informed

traders, A, on each player’s ex ante (date -1) payoff. An immediate observation is that

the coalition has no effect on the market maker’s ex ante payoff because on average, her

payoff is always 0.

For other players, in the case with no coalition of informed traders, denote EΠj(NA)

and EΠL(NA) as the ex ante payoffs to each informed trader and the liquidity trader. It

follows from the proof of Proposition 1 that

EΠj(NA) = E
[
E
[
(F̄ +X − P (NA)) ·Dj(NA)

∣∣∣Sj

]]
= λ(NA)θ2j (NA)(1 + vj),

EΠL(NA) = E
[
(F̄ +X − P (NA)) · Z

]
= −λ(NA)σ2

z .

In the case with a coalition of informed traders, A, denote EΠA(A), EΠj(A) (∀j 6∈ A),

and EΠL(A) as the ex ante payoffs to the coalition, each independent informed trader,
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and the liquidity trader. It is straightforward to show that

EΠA(A) = E
[
E
[
(F̄ +X − P (A)) ·DA(A)

∣∣∣SA

]]
= λ(A)θ2A(A)(1 + vA),

EΠj(A) = E
[
E
[
(F̄ +X − P (A)) ·Dj(A)

∣∣∣Sj

]]
= λ(A)θ2j (A)(1 + vj), ∀j 6∈ A,

EΠL(A) = E
[
(F̄ +X − P (A)) · Z

]
= −λ(A)σ2

z .

Use ΓA(A), Γj(A) (∀j 6∈ A), and ΓL(A) to describe the effects of the coalition on the ex

ante payoffs to the coalition, each independent informed trader, and the liquidity trader.

ΓA(A) = EΠA(A)−
∑
j∈A

EΠj(NA),

Γj(A) = EΠj(A)− EΠj(NA), ∀j 6∈ A,

ΓL(A) = EΠL(A)− EΠL(NA).

Coalition members share the coalition synergy, based on the Shapley value:

Γj(A) =

1
vj∑

j∈A

1

vj

ΓA(A), ∀j ∈ A.

Corollary 2. (i) The coalition increases the ex ante payoff to independent informed

traders (if any); that is, Γj(A) > 0, j 6∈ A.

(ii) The coalition decreases the ex ante payoff to the liquidity trader; that is, ΓL(A) < 0.

Proof: See the Appendix.

A coalition has three effects on an independent informed trader’s ex ante payoff. First,

it reduces competition among informed traders, which increases her payoff. Second, it

represents a stronger competitor, which decreases her payoff. Third, it leads to dry-ups
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of market liquidity, which also decreases her payoff. Part (i) of Corollary 2 suggests that

the first effect dominates the other two effects. Thus, the net effect of a coalition on an

independent informed trader’s payoff is positive.

Part (ii) of Corollary 2 suggests that a coalition has a negative effect on the liquidity

trader’s payoff. This is because the coalition causes dry-ups of market liquidity.

Does a coalition increase the ex ante payoff to allied members in the coalition? The

answer to this question is not obvious. On one hand, a coalition reduces competition

and improves the allied members’ information advantage (relative to that of independent

informed traders), which increases their payoff. On the other hand, a coalition also causes

direct costs due to search, setup, and coordination efforts, which are represented by C(A),

and an indirect cost from dry-ups of market liquidity, which decreases their payoff. We

are not able to obtain a clear comparison between the benefits and costs of form coalitions

except in the following two polar cases regarding C(A).

Two Polar Cases: In the first polar case, it is prohibitively costly to form a coalition

(i.e., C(A)→∞, ∀A). In this case, any possible gains from the coalition will be outweighed

by the high costs; that is, ΓA(A) ≤ C(A). Therefore, no coalition of informed traders will

be formed.

In the second polar case, the cost to form a coalition is negligible (i.e., C(A) → 0,

∀A). In this case, a coalition that includes all informed traders will be formed. We refer

to this coalition as a comprehensive coalition. One may wonder whether an informed

trader prefers to leave the coalition and remain independent. We can show that if all other

informed traders stay in the coalition, then she will also stay in the coalition. Therefore,

a comprehensive coalition is sustained as a Nash equilibrium.

In what follows, we assume that C(A) is prohibitively high for a comprehensive coali-
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tion, but reasonably low for a partial coalition. This allows us to focus on the partial

coalition(s). We use a numerical analysis to examine under what conditions a partial

coalition can improve the payoff of allied members, so they will form a partial coalition.8

We consider cases with different levels of information quality, V , and/or different num-

bers of informed traders, J . This allows us to examine the impacts of information and

competition on our results.

3.2.1 Who Joins a Partial Coalition?

Consider a simple economy in which there are only J = 3 informed traders. Let v1 ≤ v2 ≤

v3, so they are ordered by their information quality. Suppose that the cost function, C(A),

satisfies mild conditions, which allows only a partial coalition of two informed traders.

Who will join the coalition?

There can be three scenarios for the coalition structure.

(S1)
{

1, 2, 3
}

indicates that every informed trader remains independent.

(S2)
{
{1, 2}, 3

}
indicates that informed traders 1 and 2 form a coalition.

(S3)
{
{1, 3}, 2

}
indicates that informed traders 1 and 3 form a coalition.

(S4)
{

1, {2, 3}
}

indicates that informed traders 2 and 3 form a coalition.

In general, there can be multiple equilibria for a game with three or more players. To

simplify our analysis, we follow Jackson and Wolinsky (1996) to give two definitions about

the equilibrium.9

8We use numerical analysis to illustrate the coalition structure of the economy because we are not
able to obtain the analytical solution to our model. We have varied our numerical analysis to verify the
robustness of our main results.

9Farboodi (2014) uses a similar approach to define the network equilibrium in the banking sector.
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Definition 1. A coalition, A, is admissible if it provides a positive synergy, Γ(A) > 0.

Definition 2. A coalition, A, is stable if no player in the coalition prefers to leave.

A simple cost-benefit analysis suggests that for a partial coalition to prevail, it must

significantly improve the allied members’ information advantage and/or reduce competi-

tion. In this simple economy with three informed traders, all partial coalitions include

two informed traders, so they reduce competition to the same degree. Therefore, the

prevailing partial coalition hinges solely on its information advantage. This implies that

the partial coalition should include informed traders with the best-quality information.

Informed traders with the poorest-quality information should remain independent. The

following corollary is consistent with this intuition.

Corollary 3. Consider a simple economy with J = 3 and v1 ≤ v2 ≤ v3.

(i) A coalition between information traders 2 and 3 is not admissible because it produces

a negative synergy; that is, ΓA(A = {2, 3})) ≤ 0.

(ii) A coalition between informed traders 1 and 2 produces a higher synergy than a coali-

tion between informed traders 1 and 3; that is, ΓA(A = {1, 2}) ≥ ΓA(A = {1, 3}).

(iii) Informed trader 1 receives more benefit from a coalition with informed trader 2 than

from a coalition with informed trader 3; that is, Γ1(A = {1, 2}) ≡ 1/v1
1/v1 + 1/v2

ΓA(A =

{1, 2}) ≥ Γ1(A = {1, 3}) ≡ 1/v1
1/v1 + 1/v3

ΓA(A = {1, 3}).

Proof: See the Appendix.

Part (i) of Corollary 3 rules out the partial coalition of informed traders 2 and 3

because this coalition produces a negative synergy. Parts (ii) and (iii) suggest that the

partial coalition, A = {1, 2}, is likely to prevail not only because it produces a higher
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synergy but also because it is preferred by informed trader 1 as she gains more from the

synergy of this coalition, according to the Shapley value. For it to be admissible, it must

be

ΓA(A = {1, 2}) ≥ max(0,ΓA(A = {1, 3}),ΓA(A = {2, 3})). (1)

Figure 1 depicts the admissible coalition, A = {1, 2}, using a numerical analysis. We

let 1 = v1 ≤ v2 ≤ v3 ≤ 40. In the shaded area, Eq. (1) holds, so the partial coalition,

A = {1, 2}, is admissible. Note that this area features a high value of v3 (≥ 3.5). Therefore,

a partial coalition can prevail only if the independent informed traders do not have very

precise information. This also confirms our intuition that a partial coalition increases the

payoff to the allied informed players when it significantly improves the allied informed

traders’ information advantage.

[Insert Figure 1 here.]

Part (iii) of Corollary 3 indicates that informed trader 1 prefers to ally with informed

trader 2. For the partial coalition, A = {1, 2}, to be stable, informed trader 2 should have

no incentive to leave the coalition. Jackson and Wolinsky (1996) suggest a condition in

addition to Eq. (1).

Γ2(A = {1, 2}) ≡ 1/v2
1/v1 + 1/v2

ΓA(A = {1, 2}) ≥ Γ2(A = {1, 3}). (2)

This equation ensures that informed trader 2 gains more from staying in the coalition than

from becoming independent while letting informed traders 1 and 3 form a coalition.

[Insert Figure 2 here.]

Figure 2 shows that in the dark-shaded area, the coalition, A = {1, 2}, is stable. In

the light-shaded area, the coalition, A = {1, 2}, is fragile, so informed trader 2 may leave
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the coalition. There are two notable observations. First, the stable area features a higher

v3 than the fragile area does. This suggests that to be stable, a coalition needs to have a

significant information advantage (relative to informed trader 3). Second, the stable area

also features a much smaller v2. This suggests that to be stable, the two informed traders,

1 and 2, in the coalition must have similar-quality information, so they have a similar

share of the coalition synergy.

[Insert Figure 3 here.]

In what follows, we restrict our attention to the admissibility of the partial coalition,

A = {1, 2}. Figure 3 considers a more general case. There are J = 10 informed traders.

Their information qualities satisfy 1 = v1 ≤ v2 ≤ v3 ≤ 20 and vj = 50, ∀j > 3. The

shaded area, which features a higher value of v3 (≥ 6.5), satisfies Eq. (1), so the coalition

A = {1, 2} is admissible in this area. An interesting observation from comparing Figures 3

and 1 is that as J increases, independent informed trader 3 must have poorer information

quality for the partial coalition A = {1, 2} to be admissible. This is because as there

are more independent informed traders, independent informed trader 3 must have poorer

information quality, so that the coalition A = {1, 2} can maintain sufficient information

advantage to make a profit.

[Insert Figure 4 here.]

In Figure 4, we let vj = 35, ∀j > 3, so these informed traders have relatively better

information quality than those in Figure 3. Compared with Figure 3, the shaded area, in

which the coalition A = {1, 2} is admissible, shifts farther upwards. This area features

an even higher value of v3 (≥ 9.5). This is because as independent informed traders

j > 3 have better information quality, independent informed trader 3 must have even
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poorer information quality, so the coalition A = {1, 2} can maintain sufficient information

advantage to make a profit.

Prediction 1. A partial coalition tends to be formed by informed traders with the best-

quality information.

3.2.2 Minimum Coalition Size

Consider a symmetric case in which vj = V , ∀j, so all informed traders have the same-

quality information. Figures 1 to 4 suggest that in this symmetric case, a small partial

coalition A = {1, 2} won’t be formed because it does not significantly reduce competition

and gain information advantage. Figure 5 confirms this. Suppose that there can be only

one coalition. Panel (a) shows that if formed, the partial coalition A = {1, 2} will have a

negative synergy (i.e., ΓA(A = {1, 2}) < 0). Panel (b) shows that consistent with Corollary

2, independent informed traders generally gain from this coalition (i.e., Γj(A = {1, 2}) > 0,

∀j ≥ 3).

[Insert Figure 5 here.]

Our above cost-benefit analysis suggests that for a partial coalition to be admissible, it

needs to be sufficiently large because only a large coalition can significantly reduce com-

petition and obtain information advantage. The minimum size of an admissible coalition,

m, can be obtained as follows:

min
m

m

s.t. ΓA(A = {1, 2, ...,m}) ≥ 0.

Figure 6 plots m depending on the information quality. We assume that there are

J = 40 informed traders, each of whom has the same-quality information, vj = V , ∀j.
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Here we allow for multiple coalitions. Because of symmetry, every coalition should have the

same number of informed players. There are two notable observations. First, m increases

with the information quality, V . For example, m for a single coalition is 27 when V = 10,

and it increases to 30 when V = 5. This is because as other informed traders have good-

quality information, the coalition must be sufficiently large to reduce competition and gain

information advantage. Second, m decreases with the number of coalitions. This suggests

that coalitions can have an externality effect on one another because each coalition lowers

the intensity of competition in the market, benefiting other coalitions. This lowers the

minimum size of a coalition.

[Insert Figure 6 here.]

Figure 7 plots m depending on the number of coalitions. We assume that there can

be J = 20, 30, and 40 informed traders. Consistent with Figure 6, m decreases in the

number of coalitions. Moreover, m increases in the total number of informed traders. This

is because when there are many informed traders, a coalition must be sufficiently large to

reduce competition and gain information advantage.

[Insert Figure 7 here.]

Prediction 2. A coalition, if formed, must be sufficiently large.

3.2.3 Optimal Coalition Structure

Now we study the optimal coalition structure. To simplify our analysis, we let vj = V , ∀j,

so all informed traders have the same-quality information. We follow Dessein and Santos

(2006) to assume a quadratic cost function for a coalition:

C(A(m)) = γ(m− 1)2,
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where m represents the number of allied informed traders in the coalition. γ is a constant.

By symmetry, there can be n coalitions, each of which has m informed traders.10 Allied

members have the same Shapley value, so they share the coalition synergy equally. We

define the optimal coalition structure of the economy as follows.

Definition 3. Consider a symmetric economy, in which vj = V , ∀j, so all informed

traders have the same-quality information. A coalition structure of the economy, {m,n},

is optimal if it maximizes the average coalition member’s net gain, that is,

max
m,n

1

m
[ΓA(A = {1, 2, ...,m})− C(A(m))] .

This optimal coalition structure, {m,n}, can sustain as an equilibrium if any allied

player’s deviation from this structure leads to the collapse of the structure and the only off-

equilibrium outcome is that every informed player stays independent. Admittedly, there

can be other equilibria. We shy away from the other equilibria for two reasons. First,

there is little tractability of these equilibria. Second, from the perspectives of informed

traders, these equilibria are obviously Pareto dominated by the optimal coalition structure

we consider here.

In Figure 8, we assume that there can be J = 30 or 40 informed traders. We let

C(A(m)) = 10−4(m−1)2. Panels (a) and (b) show that as the information quality improves

(low V ), the optimal coalition size, m, increases, and the optimal number of coalitions, n,

decreases. The intuition for these results is as follows. As informed traders have good-

quality information, only large coalitions can significantly reduce competition and gain

information advantage, leading to a profit. Therefore, the optimal coalition size should

10If the total number of informed traders, J , is not divisible by n, then there will be some residual
informed traders. We assume that they remain independent.
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increase. This also leads to a smaller number of coalitions because in this simple example,

the population of informed traders is constant.

Panels (a) and (b) also show that as the number of informed traders increases (high

J), the optimal coalition size may or may not increase, but the number of coalitions

generally increases. Intuitively, a larger number of coalitions implies that the competition

is significantly reduced, so the coalitions can make a profit.

[Insert Figure 8 here.]

Prediction 3. As information quality improves, the optimal coalition size increases and

the number of coalitions decreases.

Next, we consider the case in which there are two groups of informed traders, indexed

by the subscripts 1 and 2, in the economy. Informed traders from the same group have

the same-quality information. Specifically, if informed trader j is in group 1 (group 2),

then vj = V1 (vj = V2). We follow the social-network literature (e.g., Jackson, 2008) to

assume that the two groups of informed traders live in two separate “islands,” so they can

form coalitions only within each group. In our framework, this requires that the costs of

maintaining an across-group coalition, which can be related to monitoring and enforcing,

be prohibitively high.

By symmetry, in group 1 (2), there can be n1 (n2) coalitions, each of which has m1

(m2) informed traders. In a similar vein as our Definition 3 on optimality (see above), we

assume that the two groups are equally weighted in the sense that the optimal coalition

structure m1,m2, n1, n2 maximizes the net gains of the average coalition member from each

group:

max
m1,m2,n1,n2

1

m1

[
ΓA(A = {1, ...,m1})− C(A(m1))

]
+

1

m2

[
ΓA(A = {1, ...,m2})− C(A(m2))

]
.
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[Insert Figure 9 here.]

In Figure 9, we assume that each group has 40 informed traders. Informed traders in

group 1 have better-quality information than those in group 2; specifically, V1 = 1 and

V2 > 1. We also let C(A(m)) = 10−4(m − 1)2. Panels (a) and (b) show that group 1

has a larger optimal coalition size but a smaller number of coalitions than group 2 does.

The intuition for these results is as follows. As informed traders in group 1 have relatively

good-quality information, only large coalitions can significantly reduce competition and

gain information advantage, leading to a profit. Therefore, group 1 should have a larger

coalition size, which also leads to a smaller number of coalitions. By significantly reducing

competition in the whole economy, group 1’s coalition structure, large m and small n, also

has a spillover effect on group 2’s coalition structure. Group 2’s optimal coalition size

doesn’t need to be very large, but the coalitions can still make a profit.

[Insert Figure 10 here.]

In Figure 10, we assume that there are more informed traders in group 1 than in group

2; that is, J1 > 100 and J2 = 100. We let all informed traders have the same-quality

information, V1 = V2 = 5. Also, C(A(m)) = 10−5(m − 1)2. Panels (a) and (b) show

that group 1 has a large optimal coalition size but a smaller number of coalitions than

group 2 does.11 The intuition for these results is similar to that for the case in Figure 9.

As there are more informed traders in group 1, only large coalitions can significantly

reduce competition and gain information advantage, leading to a profit. Therefore, group

1 should have a larger coalition size, which also leads to a smaller number of coalitions.

By significantly reducing competition in the whole economy, group 1’s coalition structure,

large m and small n, also has a spillover effect on group 2’s coalition structure. Group

11Note that there are some bumps in the plots, due to the nature of integer programming.
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2’s optimal coalition size doesn’t need to be very large, but the coalitions can still make a

profit.

Prediction 4. A small number of large coalitions are likely to originate from the group of

informed traders who possess good-quality information and the group of informed traders

with a large population.

4 Understanding the Industry Structure of Financial Interme-

diaries

In this section, we use our theory to obtain new insights about the industry structure

of financial intermediaries. We are particularly interested in the mutual fund industry

because after experiencing rapid growth in the past decades, this industry has become one

of the most important financial intermediaries. Toward the end of 2014, the total assets

under management by the U.S. mutual fund industry reached $15.9 trillion, with 43.3% of

households investing in mutual funds (Investment Company Institute, 2015). Yet, there is

little understanding about the structure of this industry.

From the information perspective, an asset management company in the mutual fund

industry can be interpreted as a coalition of professional money managers. This view fits

some important aspects of this industry (see the citations in Footnote 4). Our theory has

the following implications.

4.1 Firm Size and Performance

Predictions 1 and 2 imply that a big asset management company is likely to include fund

managers with the best-quality information. This implication is consistent with empirical

findings by Chen et al. (2004) and Pollet and Wilson (2008). They show that mutual funds
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affiliated with big asset management companies tend to outperform those affiliated with

small asset management companies. Bhojraj et al. (2012) further show that mutual fund

managers affiliated with big asset management companies indeed possess an information

advantage over those affiliated with small asset management companies.

4.2 Technology and Firm Size

Prediction 3 implies that as information environment improves, the consolidation of the

mutual fund industry will lead to the emergence of a few big asset management compa-

nies. Recent decades have seen fast growth in information technology, which improves

information quality. During the same period, the mutual fund industry experienced a

wave of mergers, which gave rise to a few gigantic firms. For example, BlackRock acquired

State Street Research in 2005, Merrill Lynch Investment Managers in 2006, Quellos Group

in 2007, and Barclays Global Investors in 2009. As of September 2014, Blackrock is the

biggest asset management company.

4.3 The Geography

Prediction 4 implies that the mutual fund industry can have an interesting geographic

patterns. Specifically, a small number of big asset management companies tend to arise

in areas in which there is a large population and investors receive good-quality informa-

tion. The areas in the U.S. that fit this description include Boston, Chicago, New York,

Philadelphia, Los Angeles, and San Francisco.

5 Conclusions

In this article, we develop a theory of endogenous coalition formation decisions by market

players to study the coalition structure in financial markets. In our model, the benefit
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of forming a coalition is that the allied members gain information advantage as well as

monopolistic power in trading. However, the coalition has two types of costs. First,

there can be direct costs, such as costs related to search, setup, and coordination efforts.

Second, there can be an indirect cost. Specifically, as the coalition gains monopolistic

power and behaves more strategically, the market maker lowers market liquidity to break

even. This dries up market liquidity. Such a trade-off determines the coalition structure

in the economy.

Our model has several interesting results on the coalition structure. First, a coalition is

likely to be formed by informed traders with the best-quality information. Second, a coali-

tion, if formed, must be sufficiently large. Third, as the advance of information technology

expedites information processing and dissemination, the coalition size increases and, ac-

cordingly, the number of coalitions decreases. Fourth, a small number of large coalitions

are likely to emerge from the group of informed traders with good-quality information and

the group of informed traders with a large population.

From the information perspective, financial intermediaries (e.g., asset management

companies and brokerage houses) can be viewed as sets of coalitions endogenously chosen

by market players (e.g., fund managers and financial analysts) in pursuit of information

advantage and monopolistic power in trading. Our model provides novel insights about

the industry structure of financial intermediaries.

Our model also predicts that networks, in the form of coalitions, have negative effects

on the informativeness of stock prices and market liquidity. This prediction is different

from predictions of existing theories in the literature, such as Colla and Mele (2010) and

Ozsoylev and Walden (2011).
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Appendix

Proof of Proposition 1: Our proof has two steps. In Step 1, we study how an informed

trader chooses her demand, conditional on the price and all the other informed traders’

demands being given by Proposition 1. In Step 2, we study how the market maker sets up

the price, conditional on all informed investors’ demands being given by Proposition 1.

Step 1: Consider an informed trader j. Suppose that the price, P (NA), and the demands

of all other informed investors, Di(NA), ∀i 6= j, are given by Proposition 1. Then, her

payoff from trading can be expressed as:

Πj(Sj) = E
[
Dj

(
F̄ +X − P (NA)

)
|Sj

]
= E

[
Dj

(
X − λ(NA)(Dj +

∑
i 6=j

Di(NA) + Z)
)
|Sj

]
= E

[
Dj

(
1− λ(NA)

∑
i 6=j

θi(NA)
)
X − λ(NA)D2

j |Sj

]
= Dj

(
1− λ(NA)

∑
i 6=j

θi(NA)
)
E
[
X|Sj

]
− λ(NA)D2

j

= Dj

(
1− λ(NA)

∑
i 6=j

θi(NA)
) Sj

1 + vj
− λ(NA)D2

j .

The first order condition implies

Dj(NA) =

1− λ(NA)
∑
i 6=j

θi(NA)

2λ(NA)

Sj

1 + vj
=
σz/K(NA)

1 + 2vj
Sj,

where the last equality follows by substituting the expressions of λ(NA) and θi(NA),

∀i 6= j from Proposition 1. The second order condition holds obviously. Therefore, we can

write Dj(NA) = θj(NA)Sj, where θj(NA) =
σz/K(NA)

1 + 2vj
.
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Step 2: Consider the market maker. Suppose that the demands of all informed traders,

Dj(NA), ∀j, are given by Proposition 1. Then, the total demand can be expressed as:

D =
∑
j

Dj(NA) + Z =
∑
j

(
θj(NA)Sj

)
+ Z = X

∑
j

θj(NA) +
∑
j

(
θj(NA)εj

)
+ Z.

Substituting into the price equation gives

P = F̄ + E
[
X|D = X

∑
j

θj(NA) +
∑
j

(
θj(NA)εj

)
+ Z

]

= F̄ +

∑
j

θj(NA)

(∑
j

θj(NA)
)2

+
∑
j

(
θj(NA)2vj

)
+ σ2

z

D.

Therefore, we can write P (NA) = F̄ + λ(NA)D, and

λ(NA) =

∑
j

θj(NA)

(
∑
j

θj(NA))2 +
∑
j

(
θj(NA)2vj

)
+ σ2

z

=

∑
j

σz/K(NA)

1 + 2vj(∑
j

σz/K(NA)

1 + 2vj

)2
+
∑
j

(
(
σz/K(NA)

1 + 2vj
)2vj

)
+ σ2

z

=
K(NA)/σz

1 +
∑
j

1

1 + 2vj

,

where the last equality follows by substituting into the expression of K(NA).

Q.E.D.

Proof of Lemma 1: It suffices to show that the distribution of X conditional on Sj,

∀j ∈ A, is identical to the distribution of X conditional on SA. Note that X, Sj (∀j ∈ A),
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and SA are normally distributed. So the conditional distribution of X must be a normal

distribution. We just need to show that

E
[
X|Sj,∀j ∈ A

]
=

SA

1 + vA
= E

[
X|SA

]
,

Var
[
X|Sj,∀j ∈ A

]
=

vA
1 + vA

= Var
[
X|SA

]
,

which follows immediately after we write down the joint distribution of X, Sj (∀j ∈ A),

and SA.

Q.E.D.

Proof of Proposition 2: Consider the coalition as a hypothetical informed trader, in-

dicated by A, who observes a private signal SA. The remaining proof is identical to the

proof of Proposition 1.

Q.E.D.

Proof of Corollary 1: (i) It follows from Proposition 2 that

Var(X|P (A)) = Var
[
X|D = DA(A) +

∑
j 6∈A

Dj(A) + Z
]

= Var(X)− λ(A)Cov(X,D)

= 1− λ(A)
(
θA(A) +

∑
j 6∈A

θj(A)
)

= 1− K(A)/σz

1 +
1

1 + 2vA
+
∑
j 6∈A

1

1 + 2vj

(σz/K(A)

1 + 2vA
+
∑
j 6∈A

σz/K(A)

1 + 2vj

)

=
1

1 +
1

1 + 2vA
+
∑
j 6∈A

1

1 + 2vj

.
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Similarly,

Var(X|P (A′)) =
1

1 +
1

1 + 2v′A
+
∑
j 6∈A′

1

1 + 2vj

.

For Var(X|P (A′)) > Var(X|P (A)), it suffices to show that

(
1

1 + 2vA′
+
∑
j 6∈A′

1

1 + 2vj
)− (

1

1 + 2vA
+
∑
j 6∈A

1

1 + 2vj
)

=
1

1 + 2vA′
− (

1

1 + 2vA
+

1

1 + 2vb
)

= − vA(1 + 2vb) + vb(1 + 2vA)

(vA + vb + 2vAvb)(1 + 2vA)(1 + 2vb)

< 0, (3)

where the second equality follows from vA′ = 1
/

(
1

vA
+

1

vb
).

(ii) Denote G ≡
∑
j 6∈A′

1 + vj
(1 + 2vj)2

and Q ≡
∑
j 6∈A′

1

1 + 2vj
. It is straightforward to show

that G > Q/2.

Note that

λ(A′)2 − λ(A)2 =
K(A′)2/σ2

z

(1 +
1

1 + 2vA′
+Q)2

− K(A)2/σ2
z

(1 +
1

1 + 2vA
+

1

1 + 2vb
+Q)2

,

∝

1 + vA′

(1 + 2vA′)2
+G

(1 +
1

1 + 2vA′
+Q)2

−

1 + vA
(1 + 2vA)2

+
1 + vb

(1 + 2vb)2
+G

(1 +
1

1 + 2vA
+

1

1 + 2vb
+Q)2

>

1 + vA′

(1 + 2vA′)2
+Q/2

(1 +
1

1 + 2vA′
+Q)2

−

1 + vA
(1 + 2vA)2

+
1 + vb

(1 + 2vb)2
+Q/2

(1 +
1

1 + 2vA
+

1

1 + 2vb
+Q)2

,
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where the inequality follows from G > Q/2 and Eq. (3).

For λ(A′) > λ(A), it suffices to show that

η ≡
[

1 + vA′

(1 + 2vA′)2
+Q/2

]
(1 +

1

1 + 2vA
+

1

1 + 2vb
+Q)2

−
[

1 + vA
(1 + 2vA)2

+
1 + vb

(1 + 2vb)2
+Q/2

]
(1 +

1

1 + 2vA′
+Q)2

> 0.

After substituting the expression of vA′ = 1
/

(
1

vA
+

1

vb
), write

η = η1 + 2Qη2 +Q2η3,

where

η1 ∝ (vA + vb + vAvb)
[
4(vb + 1)v2A + (4v2b + 1)vA + 4v2b + vb

]
,

η2 ∝ (16v3b + 24v2b + 10vb + 2)v3A + (24v3b + 20vb2 + 4vb +
1

4
)v2A

+(10v3b + 4v2b +
1

2
vb)vA + 2v3b +

1

4
v2b ,

η3 ∝ (32v3b + 28v2b + 8vb + 1)v3A + (28v3b + 16v2b + 2vb)v
2
A + (8v3b + 2v2b )vA + v3b .

It is obvious that η1, η2, η3 > 0. Therefore, η > 0 and λ(A′) > λ(A).

(iii) Note that ∀α, β > 0. We have the following inequality:

f(α, β) ≡ β(α + β + αβ)(1 + 2α)2 − (1 + α)(α + β + 2αβ)2

= −α3(4 + 3β)− α2(1 + 5β)− αβ

< 0.
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Substituting vA′ = 1
/

(
1

vA
+

1

vb
) yields

K(A′)2 −K(A)2 =
1 + vA′

(1 + 2vA′)2
− 1 + vA

(1 + 2vA)2
− 1 + vb

(1 + 2vb)2

∝ f(vA, vb)(1 + 2vA)2 + f(vb, vA)(1 + 2vb)
2

< 0.

It follows from K(A′) < K(A) that ∀j 6∈ A′,

θj(A
′) =

σz/K(A′)

1 + 2vj
>
σz/K(A)

1 + 2vj
= θj(A).

It follows from K(A′) < K(A) and vA′ < vA that

θA′(A′) =
σz/K(A′)

1 + 2vA′
>
σz/K(A)

1 + 2vA
= θA(A).

Q.E.D.

Proof of Corollary 2: (i) It follows from θj(A) > θj(NA) and λ(A) > λ(NA) (see

Corollary 1) that

Γj(A) = EΠj(A)− EΠj(NA) = λ(A)θ2j (A)(1 + vj)− λ(NA)θ2j (NA)(1 + vj) > 0.

(ii) It follows from λ(A) > λ(NA) (see Corollary 1) that

ΓL(A) = EΠL(A)− EΠL(NA) = (λ(NA)− λ(A)) · σ2
z < 0.

Q.E.D.
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Proof of Corollary 3: (i) Denote v23 = 1
/

(
1

v2
+

1

v3
). Write

ΓA(A = {2, 3})

= EΠA(A = {2, 3})−
[
EΠ2(NA) + EΠ3(NA)

]

=
σz√

1 + v23
(1 + 2v23)2

+
1 + v1

(1 + 2v1)2

1 + v23
(1 + 2v23)2

1 +
1

1 + 2v23
+

1

1 + 2v1

− σz√
1 + v1

(1 + 2v1)2
+

1 + v2
(1 + 2v2)2

+
1 + v3

(1 + 2v3)2

1 + v2
(1 + 2v2)2

+
1 + v3

(1 + 2v3)2

1 +
1

1 + 2v1
+

1

1 + 2v2
+

1

1 + 2v3

.

Denote v2 = v1 + a and v3 = v1 + b where b ≥ a ≥ 0. We can show that ΓA(A = {2, 3})

is proportional to a polynomial of v1, a, and b, which is non-positive. (We derive this

polynomial using Mathematica. It is six pages long and available upon request from the

authors.) Therefore, ΓA(A = {2, 3}) ≤ 0.

(ii) Denote v12 = 1
/

(
1

v1
+

1

v2
), and v13 = 1

/
(

1

v1
+

1

v3
). Write

ΓA(A = {1, 2})

= EΠA(A = {1, 2})−
[
EΠ1(NA) + EΠ2(NA)

]

=
σz√

1 + v12
(1 + 2v12)2

+
1 + v3

(1 + 2v3)2

1 + v12
(1 + 2v12)2

1 +
1

1 + 2v12
+

1

1 + 2v3

− σz√
1 + v1

(1 + 2v1)2
+

1 + v2
(1 + 2v2)2

+
1 + v3

(1 + 2v3)2

1 + v1
(1 + 2v1)2

+
1 + v2

(1 + 2v2)2

1 +
1

1 + 2v1
+

1

1 + 2v2
+

1

1 + 2v3

,
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and

ΓA(A = {1, 3})

= EΠA(A = {1, 3})−
[
EΠ1(NA) + EΠ3(NA)

]

=
σz√

1 + v13
(1 + 2v13)2

+
1 + v2

(1 + 2v2)2

1 + v13
(1 + 2v13)2

1 +
1

1 + 2v13
+

1

1 + 2v2

− σz√
1 + v1

(1 + 2v1)2
+

1 + v2
(1 + 2v2)2

+
1 + v3

(1 + 2v3)2

1 + v1
(1 + 2v1)2

+
1 + v3

(1 + 2v3)2

1 +
1

1 + 2v1
+

1

1 + 2v2
+

1

1 + 2v3

.

We can show using Mathematica Symbolic Computing that ΓA(A = {1, 2}) ≥ ΓA(A =

{1, 3}).

(iii) Similarly to the proof for Part (ii), we can also show using Mathematica Symbolic

Computing that

Γ1(A = {1, 2}) ≡ 1/v1
1/v1 + 1/v2

ΓA(A = {1, 2})

≥ Γ1(A = {1, 3}) ≡ 1/v1
1/v1 + 1/v3

ΓA(A = {1, 3}).

Q.E.D.
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Figure 1: A Partial Coalition When J = 3

There are J = 3 informed traders. Their information qualities satisfy 1 = v1 ≤ v2 ≤ v3 ≤
40. In the shaded area,

ΓA(A = {1, 2}) ≥ max(0,ΓA(A = {1, 3}),ΓA(A = {2, 3})),

so a partial coalition, A = {1, 2}, is admissible.
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Figure 2: A Partial Coalition When J = 3: Stability

There are J = 3 informed traders. Their information qualities satisfy 1 = v1 ≤ v2 ≤ v3 ≤
40. The shaded area satisfies

ΓA(A = {1, 2}) ≥ max(0,ΓA(A = {1, 3}),ΓA(A = {2, 3})).

The dark-shaded area further satisfies

Γ2(A = {1, 2}) =
1/v2

1/v1 + 1/v2
ΓA(A = {1, 2}) ≥ Γ2(A = {1, 3}).

A partial coalition, A = {1, 2}, is stable in the dark-shaded area, but fragile in the light-
shaded area.
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Figure 3: A Partial Coalition When J = 10: Case 1

There are J = 10 informed traders. Their information qualities satisfy 1 = v1 ≤ v2 ≤ v3 ≤
20 and vj = 50, ∀j > 3. In the shaded area,

ΓA(A = {1, 2}) ≥ max(0,ΓA(A = {1, 3}),ΓA(A = {2, 3})),

so a partial coalition, A = {1, 2}, is admissible.
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Figure 4: A Partial Coalition When J = 10: Case 2

There are J = 10 informed traders. Their information qualities satisfy 1 = v1 ≤ v2 ≤ v3 ≤
20 and vj = 35, ∀j > 3. In the shaded area,

ΓA(A = {1, 2}) ≥ max(0,ΓA(A = {1, 3}),ΓA(A = {2, 3})),

so a partial coalition, A = {1, 2}, is admissible.
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(a): The synergy of Hypothetical Partial Coalition A = {1, 2}, ΓA(A = {1, 2})
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(b) Profit Change of an Independent Informed Trader, Γj(A = {1, 2}), ∀j ≥ 3

Figure 5: Welfare Effects of Hypothetical Partial Coalition

There are J = 10 informed traders, each of whom has the same-quality information,
vj = V , ∀j. Let σ2

z = 100. Panel (a) plots the synergy for a hypothetical partial coalition
A = {1, 2}, ΓA(A = {1, 2}), depending on V . Panel (b) plots the profit change of an
independent informed trader due to the coalition, Γj(A = {1, 2}), ∀j ≥ 3, depending on
V .
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Figure 6: Minimum Coalition Size: Case 1

There are J = 40 informed traders, each of whom has the same-quality information,
vj = V , ∀j. We assume that there can be 1, 2, or 3 coalitions. Because of symmetry, each
coalition has the same number of informed players. The minimum size of an admissible
coalition, m, is given by:

min
m

m

s.t. ΓA(A = {1, 2, ...,m}) ≥ 0.

This figure plots the minimum coalition size, m, depending on V .
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Figure 7: Minimum Coalition Size: Case 2

There can be J = 20, 30, or 40 informed traders, each of whom has the same-quality
information, vj = 2.5, ∀j. We assume that there can be several coalitions. Because of
symmetry, each coalition has the same number of informed players. The minimum size of
an admissible coalition, m, is given by:

min
m

m

s.t. ΓA(A = {1, 2, ...,m}) ≥ 0.

This figure plots the minimum coalition size, m, depending on the number of coalitions.
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(b) Optimal Number of Coalitions

Figure 8: Optimal Coalition Structure

There can be J = 30 or 40 informed traders, each of whom has the same-quality informa-
tion, vj = V , ∀j. By symmetry, there can be n coalitions, each of which has m informed
traders. The optimal {m,n} are given by:

max
m,n

1

m
[ΓA(A = {1, 2, ...,m})− C(A(m))] ,

where C(A(m)) = 10−4(m− 1)2. This figure plots the optimal {m,n} depending on V .
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(b) Optimal Number of Coalitions

Figure 9: Optimal Coalition Structure with Two Isolated Groups of Informed Traders:
Case 1

There are two isolated groups. Each group has 40 informed traders with the same-quality
information, represented by V1 and V2. Let V1 = 1 and V2 > 1. By symmetry, in group
1 (2), there can be n1 (n2) coalitions, each of which has m1 (m2) informed traders. The
optimal {m1,m2, n1, n2} are given by:

max
m1,m2,n1,n2

1

m1

[
ΓA(A = {1, ...,m1})− C(A(m1))

]
+

1

m2

[
ΓA(A = {1, ...,m2})− C(A(m2))

]
,

where C(A(m)) = 10−4(m− 1)2. This figure plots the optimal {m1,m2, n1, n2} depending
on V2.
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Figure 10: Optimal Coalition Structure with Two Isolated Groups of Informed Traders:
Case 2

There are two isolated groups. Group 1 (2) has J1 (J2) informed traders. Let J1 > 100 and
J2 = 100. Informed traders in both groups have the same-quality information, V1 = V2 = 5.
By symmetry, in group 1 (2), there can be n1 (n2) coalitions, each of which has m1 (m2)
informed traders. The optimal {m1,m2, n1, n2} are given by:

max
m1,m2,n1,n2

1

m1

[
ΓA(A = {1, ...,m1})− C(A(m1))

]
+

1

m2

[
ΓA(A = {1, ...,m2})− C(A(m2))

]
,

where C(A(m)) = 10−5(m− 1)2. This figure plots the optimal {m1,m2, n1, n2} depending
on J1.
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