Online Appendix

Managing Weather Risk with a Neural Network-Based

Index Insurance *

Zhanhui Chen’ Yang Lu? Jinggong Zhang® Wenjun Zhul

Management Science, accepted

*We are grateful for helpful comments from Agostino Capponi (the Editor), the associate editor, three
anonymous referees, Utpal Bhattacharya, Darwin Choi, Lin William Cong, Guanhao Feng, Yan Ji, Wenxi
Jiang, Simone Krummaker (discussant), Kai Li, Weikai Li, Yingying Li, Peter Mackay, Abhiroop Mukherjee,
Yoshio Nozawa, George Panayotov, Yang Shen, Ke Tang, Qihe Tang, Jialin Yu, Chu Zhang, and the seminar
participants at WRIEC 2020, IME 2021, AT in Finance Symposium 2022, 2022 CORS/INFORMS Interna-
tional Conference, East China Normal University, Hong Kong University of Science and Technology, Peking
University, Renmin University, Southwestern University of Finance and Economics, Southern University
of Science and Technology, Sun Yat-sen University, Tsinghua University, University of New South Wales.
Zhanhui Chen acknowledges financial support from Hong Kong Research Grants Council (GRF 16502020,
GRF 16504522, TRS T31-603/21-N) and research database matching fund from the School of Business and
Management. Jinggong Zhang acknowledges funding from Singapore Ministry of Education Academic Re-
search Fund Tier 1 (RG55/20). Wenjun Zhu acknowledges funding from Singapore Ministry of Education
Academic Research Fund Tier 1 (RG143/19) and the Society of Actuaries Education Institution Grant.

tCorresponding author: Zhanhui Chen, Department of Finance, School of Business and Management,
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Tel.: +852-2358-
7670; Fax: +852-2358-1749; E-mail: |chenzhanhui@ust.hk.

tConcordia University, Montreal, QC, Canada. E-mail: yang.lu@concordia.cal

$Division of Banking & Finance, Nanyang Business School, Nanyang Technological University, Singapore
639798. E-mail: jgzhang@ntu.edu.sgl

IDivision of Banking & Finance, Nanyang Business School, Nanyang Technological University, Singapore
639798. E-mail: wjzhu@ntu.edu.sg.


mailto:chenzhanhui@ust.hk
mailto:yang.lu@concordia.ca
mailto:jgzhang@ntu.edu.sg
mailto:wjzhu@ntu.edu.sg

A An example of an overfitted solution to problem (3)

Let’s consider a special case of problem (3) as an illustrating example. Let {(x;,y;)};=1,..»
be a realized sample of (X,Y"). Consider the minimization problem:
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where Z := {I : R? — RT|I is measurable}. For simplicity we also replace the budget

constraint by:
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Then we have the following proposition:

Proposition 1 (Jensen’s inequality). For any concave utility function U and any determin-

istic function I such that P = AL 37"_ I(x;), we have:
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with equality if and only if I(x;) — y; is a constant. Therefore the optimal solution I* is

given by,

yj+P/)\—%Zlyj, ife=x;,7=12,..n,
]:

I(z) = (A.2)

any arbitrary number, otherwise.

This solution is “overfitted”: although it mathematically optimizes problem (A.1)), it says

nothing about what the amount of indemnity should be for a new data sample. In fact, the



problem comes from the fact that the admissible functional space Z is too large and contains
functions that are not constrained, or smooth enough. On the other hand, for instance, we
constrain the space Z to be the space of linear functions, then equations cannot be
satisfied for all indices j = 1,...,n. Such a solution is too smooth, and usually result in a
poor fit. Thus the challenge is to find a trade-off between these two extreme cases, that is,

to propose suitable functional constraints on the Z.



B Feasible sets

We want to choose a feasible set, Zy, which balances between flexibility and stability. Z,
should be large enough to include candidate payoff functions that capture intricate (non-
linear, nonmonotonic) relationships between the high-dimensional indices and losses, yet Zy
should also exclude “ill-behaved” ones in Z, which are sensitive to the sample data and can-
not be an appropriate insurance contract. Such trade-off is illustrated in Figure B.I The
blue star in Z is the global optimal contract, which may not be obtainedﬂ The red triangle
illustrates a highly unstable, overfitted contract, which we want to avoid. The dotted-grey
circle area, Zy, C Z, is a set of piecewise linear contracts. Although quite stable, T, is far
away from the blue star due to its restrictive functional form. Our goal is to expand the
boundary of the feasible set towards Zy, and obtain the optimal contract that falls within the
intersection area, which is represented by the blue diamond. This optimal contract sacrifices
a little stability but achieves much more flexibility and hence a large amount of basis risk

reduction.

An overfitted contract

>

<
\*d\
A
@

2=y
“0\)3“9"‘

»
o5

Indemnity Loss

Optimal contract in 1,
Optimal contract in I

Optimal contract in T

Figure B.1: Feasible sets and optimal contracts. This figure compares three different feasible sets and
their corresponding optimal contracts. The dashed-green circle area represents the indemnity loss, which is
the actual loss experienced by the policyholder. The general feasible set, Z, is represented by the solid-blue
circle area and the blue star denotes the global optimal contract. The dotted-grey circle area, Zy, is a feasible
set of all piecewise linear contracts. The black dot at the edge of Ty is the optimal piecewise linear contract,
i.e., the contract with the smallest basis risk within Zy. The dotted-blue area, Zy, represents the feasible set
we explore. Its optimal contract is denoted by the blue diamond. The red triangle illustrates an overfitted
contract.

IThis is due to the fact that we replace the expectation in problem (1) with its empirical counterpart.



C Neural network structure

Figure illustrates a neural network with H-hidden layers.

Input: indices. X3 X, X X Input = X' = (X1, Xy, .. »Xp)T

Hidden

Layer 1 zW = fo(a(o) + w(O)XInput)
Hidden zZ@ — fi(a® + w(l)Z(l))

Layer 2

Hidden i Z(H) ZU — fu (@) o H-D Z(H-1)
Layer H Z; PH

Output: payoff function 1= fH(a(H) + w(H)Z(H))

Figure C.1: An illustration of neural networks with H-hidden layers. This is an
example of the fully-connected architecture in which neurons between two adjacent layers
are fully pairwise connected, but neurons within a layer have no connections. f; is an
activation function; a®™ and w™ are parameters of the linear combination, h = 1,2,..., H.



D Algorithm: Solve for the optimal index insurance policy

Output: An optimal index insurance policy

Input : Index data X and loss data Y

Build and initialize a neural network;

Initialization: k = 0, ¢y = €1, obtain I by solving an unconstrained problem ®;
while |I — [ju5| > €3 or g(I) > ey or |mo(I) — me(liast)| > €4 do

Set Ilast = I, 7Te<]la5t) = 7Te<1);

Update k < k + 1;

Train the neural network and obtain the optimal I for problem ®(I):

(==L SNV VI

(I)k(l) = —%ZU(w—y]%—[(a:j) —7Te<1)> +¢l~c 9([)7

J=1

where the loss function is customized according to @y (1) and [} is set to the
initial value of optimization;

7 Update g(I) and 7 (1);

end

return (/)

©

Algorithm 1: Solve for the optimal index insurance policy.




E Data Summary

Tables [E.1] and [E.2] show summary statistics of the 72 weather indices used for empirical
analysis. Statistics including mean, standard deviation, minimum, 25" and 75" percentiles,

and maximum, are presented. The sample period is 1925-2018.
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F Nonlinear relationships between production losses and weather
indices

This appendix collects scatterplots of all 72 weather indices against the crop losses, using
1,000 random draws from the sample. The blue curve is fitted by a generalized additive
model. The shadow area indicates 95% confidence interval. We can see that most weather
indices have intricate nonlinear relationships with crop losses, and this complexity could
not be adequately captured by linear models that are used by most existing index insurance
design framework. The nonlinearity suggests inadequacy of those index insurance with simple

structures, and calls for more sophisticated models.
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Figure F.1: Scatterplots of precipitation (Jan-Dec) with crop losses.
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Figure F.2: Scatterplots of dew point temperature (Jan-Dec) with crop losses.
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Figure F.3: Scatterplots of maximum temperature (Jan-Dec) with crop losses.
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Figure F.4: Scatterplots of minimum temperature (Jan-Dec) with crop losses.
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Figure F.5: Scatterplots of maximum vapor pressure deficit (Jan-Dec) with crop losses.
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Figure F.6: Scatterplots of minimum vapor pressure deficit (Jan-Dec) with crop losses.
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G Data homogeneity

Agricultural risk management is often faced with the challenge of data scarcity, since crop
yield data are only recorded at annual frequency. Therefore, in order to increase the data
sample size, and hence the performance of the trained NN-based index insurance, we assume
in this paper that crop yield losses are both time and space homogeneous and expand the
sample size to 7,869 county-years. In this appendix, we verify the data homogeneity assump-
tions. In order to guarantee the time homogeneity, following the literature, we perform a
series of statistical analysis to remove trends and heteroscedasticity in the data (see Section
4.1.1 for details). The time homogeneity of our detrended data could be justified by the
similarity of data in the three disjoint samples. For example, the utility without insurance in
the training, validation, and test samples are -3.99, -3.99, and -4.16, respectively, which are
very close. For spatial homogeneity, we perform a simple test by inspecting the homogeneity
assumption in the results. In particular, we randomly combine two counties into one location
and train the NN-based index insurance again. The results are displayed in Table [G.I] We
can see the results of the NN-based insurance trained with the randomly combined sample
are similar to those trained with the original sample in our main analysis (the performance in
the randomly combined sample declines slightly compared to the baseline results because of

the reduced sample size). This quantitatively confirms the spatial homogeneity assumption.
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Table G.1: Data homogeneity. We validate the data homogeneity assumption. In particular, we ran-
domly combine two counties into one location and train the NN-based index insurance again. Panel A
summarizes utilities with and without (w/o) different index insurance policies and the percentage of utility
improvement. Panel B summarizes CEW with and without (w/o) index insurance policies and certainty
equivalent wealth (CEW) improvements in dollars and as a percentage. Panel C summarizes policy charac-
teristics, including premiums, coverage, and profits for the insurers. Panel D summarizes the risk reduction
effect of different index insurance policies, measured by the standard deviation of wealth. Panel E sum-
marizes the risk reduction at the tail, measured by the 5%-level value-at-risk (VaR). “BL” represents the
baseline case studied in Section 4.2. The risk loading parameter at equilibrium (A*) for each contract is
reported in parentheses.

Original sample (BL) Randomly combined sample

Sample (\* = 1.2414) (\* = 1.2329)
Data Training Test Training Test
Panel A: Utility improvement

U with insurance -3.57 -3.57 -3.65 -3.69
U w/o insurance -3.99 -4.16 -4.07 -4.23
U improvement (%) 10.60% 14.35% 10.51% 12.76%
Panel B: CEW improvement

CEW with insurance 444.64 444.61 441.85 440.20
CEW w/o insurance 430.63 425.26 427.97 423.14
CEW improvement 14.00 19.36 13.88 17.06
CEW improvement (%)  3.25% 4.55% 3.24% 4.03%
Panel C: Policy characteristics

Premium 28.44 28.72 29.66 29.08
Coverage 22.91 23.13 24.06 23.59
Insurer Profit 5.53 5.59 5.60 5.49
Panel D: Risk reduction measured by standard deviation

Std 54.05 47.49 46.07 42.26
Std w/o insurance 81.94 78.92 76.73 74.03
Std reduction 34.04% 39.82% 39.96% 42.92%
Panel E: Risk reduction measured by Value-at-Risk (VaR)

VaRsy, 382.89 379.64 392.84 390.32
VaRsy w/o insurance 316.28 325.91 320.35 323.69
VaRsy, improvement 66.61 53.73 72.49 66.63
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H Ranking weather indices according to gradient-based sensitiv-

ities

This appendix displays ranking of all weather indices based on their gradient-based sen-

sitivities to insurance payoffs from the NN-based index insurance contract and their absolute

correlations with production losses, in Figure The number on top of each bar is the rank

difference between using the sensitivity analysis and the absolute correlation. We can see

from Figure that some weather indices are impactful in terms of both absolute correla-

tion and sensitivities (those ranked high with small rank differences, e.g., tmax12, vpdmax8),

whereas some weather indices are impactful based on sensitivities but not correlations (those

ranked high with larger rank differences, e.g., dpt11l, vpdmin5). From the perspective of de-

signing effective index insurance contracts, those weather indices with large absolute value

of correlations are not necessarily the most important ones.

Index Insurance Sensitivity

2
10.0-| g1

7.5-

5.0-

2.5-
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A A, )

S O TR AR,
- A O
&‘fﬁ&&ﬁz&@@ O R

Indices

Figure H.1: Rankings of indices according to index insurance sensitivities. The
number on top of each bar is the rank difference between using the sensitivity analysis
criterion and the absolute correlation criterion.
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I Basis risk of 7 index insurance contracts

In this subsection, we compare basis risk of seven index insurances considered in Section
4.4. Panel (a) of Figure 1 replicates the large basis risk observed in current practice, which
is a single-index piecewise-linear insurance contract (Linearl). Figures |I.1{ and [I.2] illustrate
how well insurance payoffs match the real losses incurred for the other six index insurance
contracts discussed above, using the training sample and test sample, respectively. Across all
contracts, except NN72, we observe a notably large mismatch between losses and insurance
payoffs, especially for the test set. In contrast, NN72 has a payoff function that is similar
to the stop-loss payoff function of a conventional indemnity-based insurance, indicating its
dramatic accuracy in mimicking the actual losses by utilizing complex information conveyed
in the weather variables. Therefore, the baseline model achieves low basis risk, which is
similar to a conventional indemnity-based insurance. These results illustrate the importance

of using nonlinear, high-dimensional inputs when designing the index insurance contracts.
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Figure 1.1: Basis risk of various index insurance contracts, using the training
sample. These panels plot the insurance payoffs against actual loss, using the training
sample. Six insurance contracts are presented, including (a) a linear insurance contract
with five weather indices (Linearb); (b) a quadratic insurance contract with five weather
indices (Quadratich); (c) a cubic insurance contract with five weather indices (Cubich); (d)
an NN-based contract with five weather indices (NN5); (e) a linear insurance contract with
72 weather indices (Linear72); and (f) the baseline model (NN72,; an NN-based contract with

72 weather indices).
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Figure 1.2: Basis risk of various index insurance contracts, using the test sample.
These panels plot the insurance payoffs against actual loss, using the test sample. Six in-
surance contracts are presented, including (a) a linear insurance contract with five weather
indices (Linear5); (b) a quadratic insurance contract with five weather indices (Quadratich);
(c) a cubic insurance contract with five weather indices (Cubich); (d) an NN-based contract
with five weather indices (NN5); (e) a linear insurance contract with 72 weather indices (Lin-
ear72); and (f) the baseline model (NN72, an NN-based contract with 72 weather indices).
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J The impacts of dimensionality

In this subsection, we investigate the impact of dimensionality on the NN-based index
insurance performance. We consider models with the most important 1, 18, 36, 54, and 72
weather indices. The index importance is ranked based on the gradient-based sensitivity
analysis discussed in Section 4.3. We see that using only one index improves the utility
by 0.47% in the test set. Adding more weather indices significantly improves the model
performances. For example, the model with 36 weather indices improves the utility by 13.40%
in the test set. This analysis demonstrates the importance of including higher dimensional

inputs in the NN-based index insurance contract.
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Table J.1: Comparing models with various number of weather indices. We evaluate the perfor-
mance of the NN-based index insurance with different number of weather indices in the test set, using 1,
18, 36, 54, and 72 weather indices. Panel A summarizes utilities with and without (w/o) different index
insurance policies and the percentage of utility improvement. Panel B summarizes CEW with and without
(w/o) index insurance policies and certainty equivalent wealth (CEW) improvements in dollars and as a
percentage. Panel C summarizes policy characteristics, including premiums, coverage, and profits for the
insurers. Panel D summarizes the risk reduction effect of different index insurance policies, measured by the
standard deviation of wealth. Panel E summarizes the risk reduction at the tail, measured by the 5%-level
value-at-risk (VaR). “BL” represents the baseline case studied in Section 4.2.

72 indices (BL) 54 indices 36 indices 18 indices One index

Panel A: Utility improvement

U with insurance -3.57 -3.60 -3.61 -3.67 -4.14

U w/o insurance -4.16 -4.16 -4.16 -4.16 -4.16

U improvement (%) 14.35% 13.64% 13.40% 11.90% 0.47%
Panel B: CEW improvement

CEW with insurance 444.61 443.58 443.24 441.10 425.84
CEW w/o insurance 425.26 425.26 425.26 425.26 425.26
CEW improvement 19.36 18.33 17.99 15.84 0.58

CEW improvement (%) 4.55% 4.31% 4.23% 3.73% 0.14%
Panel C: Policy characteristics

Premium 28.72 28.56 27.12 21.61 27.24
Coverage 23.13 23.01 21.85 17.41 25.91
Insurer Profit 5.59 5.55 5.27 4.20 1.33

Panel D: Risk reduction measured by standard deviation

Std 47.49 49.46 50.94 56.63 72.92
Std w/o insurance 78.92 78.92 78.92 78.92 78.92
Std reduction 39.82% 37.33% 35.45% 28.24% 7.60%
Panel E: Risk reduction measured by Value-at-Risk (VaR)

VaR;9 379.64 371.54 370.77 357.98 335.30
VaRsy w/o insurance 325.91 325.91 325.91 325.91 325.91
VaRs9, improvement 53.73 45.64 44.86 32.08 9.39
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K Weather predictability

In the past four decades, numerical weather prediction technology has been improving a

lot. That is, adding one day of predictive power per decade (Bauer et al|2015). However,

long-term (e.g., several months or one-year ahead) weather is still unpredictable (Alley et al.

2019, Voosen|2019). For example, Figure plots the forecast skill at three-, five-, seven-,

and ten-day ranges. The best forecast at the European Centre for Medium-Range Weather
Forecasts (ECMWF') runs out to around 10 days. In fact, research shows that there indeed
exists a predictability limit for weather forecast, which is 4-5 days in general and 10 days for

midlatitude weather.
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Figure K.1: The evolution of weather forecast quality. This figure plots the fore-
cast skill at three-, five-, seven-, and ten-day ranges. The forecast skill is measured by
anomaly correlation coefficient (ACC) of the height of 500-hPa level between the fore-
casts and observations. The two curves are computed over the extra-tropical northern
and southern hemispheres. In practice, a value higher than 60% is treated as a skill-
ful weather forecast. This plot is adapted from the ECMWF official website (https:
//www.ecmwf .int/en/forecasts/charts/catalogue/plwww_m_hr_ccaf_adrian_ts).
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L Robustness checks

We further perform several robustness checks in this section. First, we examine the
impacts of insurers’ characteristics. We consider various insurers’ supply curves and also
exogenously given risk loading. Second, we examine the impacts of farmers’ characteristics,
such as different coverage levels, risk aversion, and alternative utility functions (e.g., log

utility and power utility) on the NN-based index insurance contract.

L.1 Different insurers’ supply curves

In our previous analysis, the equilibrium loading parameter, \*, was determined via a
reduced-form approach, where the supply curve is estimated using market data from the
USDA SOB Reports, which might have simultaneity issue. To address these concerns, in
this subsection, we further investigate the robustness of insurers’ supply curve. We use the
upper and lower bounds of [10%, 90%] and [25%, 75%] confidence intervals of the supply
curve estimates to determine the equilibrium loading parameter. Figure displays our
estimated supply curve with its confidence intervals.

Table [L.I|summarizes the results. When insurers’ supply curve shifts to the upper bounds
of its confidence intervals, equilibrium loading parameter, \*, decreases, and the equilibrium
insurance demand increases. As a consequence, farmers buy more index insurance, and
achieve more utility improvements and higher CEW. While insurance demand increases, we
observe that insurers do not gain higher profits as the insurance is priced lower. When the
insurance supply curve moves toward the lower bounds of its confidence intervals, A* increases
and insurance demand decreases. Correspondingly, farmers’ utilities and CEW improvements
are reduced. Overall, under various supply curves, the NN-based index insurance contract
provides robust results for utility and CEW improvements, risk reduction, and insurers’

profits. Therefore, potential simultaneity issue barely affects the results.
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L.2 Exogenous risk loading and market demand

Previously, we mainly analyze the equilibrium when insurance premium is endogenously
determined. However, it is possible that there are some exogenous sources affecting the in-
surance premium. For example, supply frictions such as administration costs, litigation risks
and regulatory frictions that insurers might face, or imperfect competition among insurers.
This can be captured by a partial equilibrium case where insurers can choose risk loading, A.
To this end, we consider exogenous values of A = 1.33,1.37, and 1.415, which corresponds to
the case when insurance demand reduces by 20%, 30%, and 40% relative to the endogenous
case, respectively. The results are summarized in Table [L.2] We see that as the insurance
become more expensive, both the farmer’s incentive to purchase insurance and utility im-
provement decrease. However, it is important to note that even with the largest demand
reduction of 40%, the policyholder gains a utility improvement of 11.31% and a CEW im-
provement of $15 in the test sample, and basis risk is significantly reduced, as measured by
either standard deviation or VaR. Finally, the insurer is observed to have a trade-off when
determining its risk loading. While a larger A leads to a higher profit margin, it negatively

affects its market demand and thus the total profit.

L.3 Farmers with different coverage demands

In the baseline case, we focus on farmers who are solely interested in maximizing their
utility, regardless of the coverage they purchase and premiums they pay. In practice, however,
farmers often have a predetermined level of coverage in mind, because of either a better
understanding of their financial position and insurance demand, or a relatively tight budget
constraint. As a result, these farmers may be interested in more customized index insurance
contracts. The NN-based index insurance design proposed in this paper is convenient to
create customized contracts to meet their demands.

For illustration purposes, we consider a set of index insurance plans with a coverage of $10,

$20, $30, and $40. Table summarizes the results of these four contracts. For comparison
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purposes, we also list the baseline model which has the optimal coverage of $23.13. We see
that the amount of utility improvement first increases with coverage, peaking in the baseline
case, and then decreasing with the coverage level. Overall, the NN-based insurance contract

provides reasonable utility improvement for various coverage levels.

L.4 Farmers with different levels of risk aversion

Farmers’ risk aversion varies with their age, education, farming experience, wealth, etc.
One might wonder how different risk appetites lead to different demands for insurance. In
this subsection, we consider policyholders with various levels of risk aversion. In addition to
the baseline case in which o = 0.008 (corresponding to a relative risk aversion of 3.1), we
consider farmers with relative risk aversions of 2,4, and 5, which correspond to absolute risk
aversion coefficients of a = 0.0051,0.0103, and 0.0129, respectively. Table summarizes
the results. Table shows that the optimal index insurance design achieves greater utility
and CEW improvements for farmers with higher risk aversion. This is because more risk-
averse policyholders are more concerned about volatilities in their wealth. As such, insurers
can charge these farmers higher premiums (i.e., imposing a higher loading parameter, A*).

Next, we consider farmers with time-varying risk aversion which depends on losses in
the previous year. For example, farmers might become more risk averse after large losses,
especially for less educated farmers without long-term learning skills (Cai et al.[2020). Such
time-varying risk aversion might capture time inconsistency as well. Specifically, we first
compute the 75" and 25" percentiles of yield loss. Suppose the farmer’s average relative
risk aversion is RRA = 3.1 (absolute risk aversion is v = 0.008). If the farmer experiences a
loss larger than the 75 percentile in year t—1, her risk aversion in year ¢ becomes 3.1x (1+x);

on the contrary, if the farmer experiences a loss lower than the 25

percentile in year t — 1,
her risk aversion in year ¢ is 3.1 x (1—x). That is, the farmer’s risk aversion is 3.1 x (1—=x), 3.1,
or 3.1 x (1 + x), depending on the previous loss experience. We consider different levels of

risk aversion variations, i.e., x = 0.1,0.2, and 0.3. The results are summarized in Table [L.5]
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Generally, we see that the NN-based index insurance consistently improves farmers’ utility
and CEW, and reduces basis risk across the specifications. Nevertheless, time-varying risk
aversion impedes the performance of the designed index insurance, with larger variations of

risk aversion hindering the insurance performance more.

L.5 Alternative utility functions

In this subsection, we evaluate the performance of the proposed NN-based index insurance
using constant relative risk aversion (CRRA) utility functions. We consider the power utility
with various levels of risk aversion, that is, relative risk aversion (RRA) of 2, 3, 4, and 5, and
log utility (RRA = 1). Again, we use the 3-hidden-layer (64-64-16 neurons) structure, as in
the baseline model. Table summarizes the resultsﬂ The performance is similar to the
baseline case with negative exponential utility. Using log utility, we find that the farmer’s
utility and CEW improvements are marginal because the risk aversion of her log utility is
low (RRA = 1). Evaluating the results of power utility, we see that as policyholders become
more risk averse, they purchase more coverage, and insurers also make higher profits. Index
insurance performance also significantly increases with risk aversion. For example, the CEW
improvement for RRA = 5 is about five times larger than that for RRA = 2. Comparing the
results with the negative exponential utility case in Table [L.4] we observe that the insurance
has higher CEW improvements, given the same RRA. This is because power utility functions

penalize extremely low wealth cases more severely.

2Logarithm utility and power utility functions are not defined for negative wealth. Therefore, to avoid
the negative wealth cases, we winsorize the loss data at 99% percentile.
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Figure L.1: Confidence intervals of the insurance supply curve. This figure displays
the upper and lower bounds of the [10%, 90%)] and [25%, 75%)] confidence intervals for the
estimated supply curve of the index insurance. The insurance supply curve is fitted from the
USDA SOB Reports data with a power function using the nonlinear least squares method.
The demand curve is for the NN-based optimal index insurance with a 3-hidden-layer (64-64-
16 neurons) structure, and is fitted with a piecewise cubic hermite interpolating polynomial.
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Table L.1: Impacts of insurer’s supply curves. We test the robustness of our results using the upper
and lower bounds of [10%, 90%] and [25%, 75%)] confidence intervals (CI) of the supply curve estimates.
Panel A summarizes utilities with and without (w/o) index insurance policies and the percentage of utility
improvement. Panel B summarizes certainty equivalent wealth (CEW) with and without (w/o) index insur-
ance and the CEW improvements in dollars and as a percentage. Panel C summarizes policy characteristics,
including premiums, coverage, and profits for the insurer. Panel D summarizes the risk reduction effect
of different index insurance policies, measured by the standard deviation of wealth. Panel E summarizes
the risk reduction at the tail, measured by the 5%-level value-at-risk (VaR). The risk loading parameter at
equilibrium (A*) for each contract is reported in parentheses.

[25%, 75%)] CI [10%, 90%] CI

Supply curve Lower bound Upper bound Lower bound Upper bound

(\* = 1.2814) (A =1.1871) (N =1.3142) (N =1.1744)
Data Training  Test  Training  Test  Training  Test  Training  Test
Panel A: Utility improvement
U with insurance -3.57 -3.65 -3.53 -3.53 -3.59 -3.67 -3.52 -3.52
U w/o insurance -3.99 -4.16 -3.99 -4.16 -3.99 -4.16 -3.99 -4.16
U improvement (%) 10.43% 12.34% 11.53% 15.31%  9.95% 11.81% 11.77% 15.54%

Panel B: CEW improvement
CEW with insurance 444.41  441.72  445.95  446.03  443.73 44096  446.28  446.37

CEW w/o insurance 430.63  425.26  430.63  425.26  430.63  425.26  430.63  425.26
CEW improvement 13.77 16.46 15.32 20.77 13.10 15.70 15.65 21.11
CEW improvement (%)  3.20% 3.87% 3.56% 4.89% 3.04% 3.69% 3.63% 4.96%

Panel C: Policy characteristics

Premium 26.28 26.84 29.38 30.07 26.57 25.92 31.38 31.73
Coverage 20.51 20.95 24.75 25.33 20.21 19.72 26.72 27.02
Insurer Profit 5.77 5.90 4.63 4.74 6.35 6.20 4.66 4.71
Panel D: Risk reduction measured by standard deviation

Std 54.82 53.27 52.86 45.89 55.06 54.09 51.78 44.94
Std w/o insurance 81.94 78.92 81.94 78.92 81.94 78.92 81.94 78.92
Std reduction 33.10% 32.49% 35.49% 41.85% 32.81% 31.46% 36.81% 43.06%
Panel E: Risk reduction measured by Value-at-Risk (VaR)

VaRs9 384.10  362.39 384.30 383.05 383.67 358.27 385.54  384.74
VaRs9, w/o insurance 316.28  325.91  316.28 325.91 316.28 32591  316.28  325.91
VaRsy improvement 67.82 36.49 68.03 57.14 67.39 32.36 69.27 58.83
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Table L.2: Exogenously specified risk loading. This table compares insurance contract performances
when risk loading is exogenously specified. We consider some exogenously given risk loadings: A* = 1.33,1.37
and 1.415, which corresponds to a reduction of demand by 20%, 30%, and 40%, relative to the baseline model.
Panel A summarizes utilities with and without (w/o) different index insurance policies and the percentage
of utility improvement. Panel B summarizes CEW with and without (w/o) index insurance policies and
certainty equivalent wealth (CEW) improvements in dollars and as a percentage. Panel C summarizes policy
characteristics, including premiums, coverage, and profits for the insurers. Panel D summarizes the risk
reduction effect of different index insurance policies, measured by the standard deviation of wealth. Panel
E summarizes the risk reduction at the tail, measured by the 5%-level value-at-risk (VaR). “BL” represents
the baseline case studied in Section 4.2.

Coverage reduction 0% (BL) 20% 30% 40%

Risk loading A =1.2414 (BL) A=133 A =137 A =1415
Data Training  Test  Training  Test  Training Test  Training  Test
Panel A: Utility improvement

U with insurance -3.57 -3.57 -3.63 -3.64 -3.65 -3.68 -3.68 -3.69
U w/o insurance -3.99 -4.16 -3.99 -4.16 -3.99 -4.16 -3.99 -4.16
U improvement (%) 10.60% 14.35%  9.03%  12.60%  839% 11.60%  7.84%  11.31%

Panel B: CEW improvement
CEW with insurance 444.64  444.61  442.46  442.10 441.58  440.67  440.84  440.26

CEW w/o insurance 430.63  425.26  430.63  425.26  430.63  425.26  430.63  425.26
CEW improvement 14.00 19.36 11.82 16.84 10.95 15.41 10.21 15.00
CEW improvement (%)  3.25%  4.55%  2.75%  3.96%  2.54%  3.62% 23™%  3.53%

Panel C: Policy characteristics

Premium 28.44 28.72 24.43 24.37 22.06 20.02 19.33 17.18
Coverage 22,01 23.13 18.37 18.32 16.10 14.61 13.66 12.14
Insurer Profit 5.53 5.59 6.06 6.05 5.96 5.41 5.67 5.04
Panel D: Risk reduction measured by standard deviation

Std 54.05 47.49 57.50 52.16 59.64 56.42 61.88 58.30
Std w/o insurance 81.94 78.92 81.94 78.92 81.94 78.92 81.94 78.92
Std reduction 34.04% 39.82% 29.83%  33.90% 27.22%  28.50% 24.48%  26.13%
Panel E: Risk reduction measured by Value-at-Risk (VaR)

VaRsy, 382.89  379.64 379.56  371.51  373.37  362.77  369.05  362.05
VaRs9, w/o insurance 316.28 32591  316.28 32591 316.28 32591  316.28  325.91
VaRsy, improvement 66.61 53.73 63.28 45.61 57.09 36.86 52.78 36.14
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Table L.3: Impacts of coverage level. We consider an NN-based index insurance with various coverage
levels. Panel A summarizes utilities with and without (w/o) index insurance policies and the percentage of
utility improvement. Panel B summarizes certainty equivalent wealth (CEW) with and without (w/o) index
insurance policies and CEW improvements in dollars and as a percentage. Panel C summarizes the risk
reduction effect of different index insurance policies, measured by the standard deviation of wealth. Panel
D summarizes the risk reduction at the tail, measured by the 5%-level value-at-risk (VaR). “BL” indicates
the baseline case studied in Section 4.2.

Coverage: $10 Coverage: $20  Coverage: $23.13(BL)  Coverage: $30 Coverage: $40

Data Training  Test  Training  Test  Training Test Training  Test  Training  Test
Panel A: Utility improvement

U with insurance -3.63 -3.66 -3.56 -3.58 -3.57 -3.57 -3.58 -3.58 -3.62 -3.64
U w/o insurance -3.99 -4.16 -3.99 -4.16 -3.99 -4.16 -3.99 -4.16 -3.99 -4.16
U improvement (%) 8.98%  12.02% 10.60% 14.11% 10.60% 14.35% 10.34% 13.95%  9.21%  12.54%

Panel B: CEW improvement

CEW with insurance 44240  441.26  444.65 44428  444.64 444.61 44428  444.04 44271  442.00
CEW w/o insurance 430.63  425.26  430.63  425.26  430.63 425.26 430.63  425.26  430.63  425.26
CEW improvement 11.76 16.00 14.01 19.02 14.00 19.36 13.65 18.78 12.07 16.75
CEW improvement (%) 2.73%  3.76%  3.25%  447%  3.25% 4.55% 3.17%  4.42%  2.80%  3.94%

Panel C: Risk reduction measured by standard deviation

Std 65.61 61.72 56.03 50.21 54.05 47.49 50.71 43.94 47.97 42.08

Std w/o insurance 81.94 78.92 81.94 78.92 81.94 78.92 81.94 78.92 81.94 78.92

Std reduction 19.94% 21.79% 31.62% 36.37%  34.04% 39.82% 38.11% 44.32% 41.46%  46.68%
Panel D: Risk reduction measured by Value-at-Risk (VaR)

VaRsg, 359.65  353.98  380.75  374.99  382.89 379.64 383.57 382.84 380.75  379.06
VaRsy, w/o insurance 316.28 32591 316.28 325.91  316.28 325.91 316.28 32591  316.28  325.91
VaRsy, improvement 43.37 28.07 64.47 49.09 66.61 53.73 67.29 56.93 64.47 53.16
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Table L.5: Impacts of time-varying risk aversion. We evaluate the index insurance performance
with time-varying risk aversion. The farmer’s average relative risk aversion is RRA = 3.1. If the farmer
experiences a loss larger than the 75" percentile in year £ — 1, her risk aversion in year ¢ becomes 3.1 x (1+x);
on the contrary, if the farmer experiences a loss lower than the 25" percentile in year ¢ — 1, her risk aversion
in year ¢ is 3.1 x (1 — z). Columns 2-7 display results for different risk aversion variations (z = 0.1,0.2,
and 0.3). The last two columns correspond to a constant risk aversion of 3.1, which is our baseline model.
Panel A summarizes utilities with and without (w/o) different index insurance policies and the percentage
of utility improvement. Panel B summarizes CEW with and without (w/o) index insurance policies and
certainty equivalent wealth (CEW) improvements in dollars and as a percentage. Panel C summarizes policy
characteristics, including premiums, coverage, and profits for the insurers. Panel D summarizes the risk
reduction effect of different index insurance policies, measured by the standard deviation of wealth. Panel
E summarizes the risk reduction at the tail, measured by the 5%-level value-at-risk (VaR).

) ) z=0.1 z=0.2 z=0.3 Baseline model
Risk aversion RRA=28,31,34 RRA=2531,37 RRA=22314 RRA = 3.1
Data Training Test Training Test Training  Test  Training  Test
Panel A: Utility improvement
U with insurance -3.75 -3.79 -4.41 -4.51 -5.74 -5.94 -3.57 -3.57
U w/o insurance -4.18 -4.33 -4.86 -4.99 -6.22 -6.33 -3.99 -4.16
U improvement (%) 10.22%  12.57%  9.23% 9.62% 781%  6.17%  10.60% 14.35%

Panel B: CEW improvement

CEW with insurance 444.82 443.35 443.97 440.88 442.35  438.13  444.64  444.61
CEW w/o insurance 431.21 425.35 431.22 424.60 431.17  423.60  430.63  425.26
CEW improvement 13.61 18.00 12.75 16.27 11.18 14.54 14.00 19.36
CEW improvement (%)  3.16% 4.23% 2.96% 3.83% 2.59%  3.43%  3.25%  4.55%

Panel C: Policy characteristics

Premium 28.24 28.56 26.05 25.83 25.35 24.60 28.44 28.72
Coverage 22.75 23.01 20.99 20.81 20.42 19.82 22.91 23.13
Insurer Profit 5.49 5.56 5.07 5.02 4.93 4.78 5.53 5.59
Panel D: Risk reduction measured by standard deviation

Std 54.65 51.17 57.18 56.55 60.02 61.74 54.05 47.49
Std w/o insurance 81.94 78.92 81.94 78.92 81.94 78.92 81.94 78.92
Std reduction 33.30%  35.16%  30.21%  28.34%  26.76% 21.77% 34.04% 39.82%
Panel E: Risk reduction measured by Value-at-Risk (VaR)

VaRs 379.98 367.23 370.58 357.64 359.41  348.69 382.89  379.64
VaRsy, w/o insurance 316.59 326.59 316.59 326.59 316.59  326.59  316.28 32591
VaRsy, improvement 63.39 40.64 53.99 31.05 42.82 22.10 66.61 53.73
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M Protecting corn price risk

Previously we focus on discussing index insurance for production losses, i.e., yield insur-
ance. However, as corn prices fluctuate, one might consider simultaneously providing corn
price protection to farmers. In this section, we apply the same NN-based framework and
design an index insurance contract to protect both the production and price risks, that is,
the revenue protection.

We use the average price of the Chicago Mercantile Exchange (CME) Group December
futures contracts during the month of February as the expected corn pricef| The futures
price contains the market’s expectation of the corn commodity demand and supply within
the same calendar year. In addition, the average of December CME Group futures contract
price during February is also used as the projected price of the revenue protection in the
FCIP in the U.S. Therefore, it is an appropriate measure of price risk. The sample period
for the futures prices is from 1980 to 2017. We compare two contracts: NN72 (the baseline
model), and Linear72 (a linear contract with all 72 weather indices).

Table [M.1] summarizes the index insurance performances. We see that after considering
price risk, the NN72 index insurance remains effective in improving farmers’ utilities and
CEW, stabilizing their wealth distributions, and reducing downside tail risks. The NN72
contract achieves a CEW improvement of $19.46/acre in the training sample and $20.68/acre
in the test sample, improving CEW by 4.85% and 5.19% in the training sample and test
sample, respectively. This is similar to the case that considers production risk only in Table
4. Comparing NN72 and Linear72 contracts, we see that Linear72 has much worse utility
and CEW improvement, even though the premium is similar. Figure shows that NN72

achieves a more effective basis risk reduction than Linear72.

3See [Rouwenhorst and Tang| (2012)) and Kang et al.| (2020) for discussions of commodity pricing.
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Table M.1: Protecting both production and price risks. We consider an index insurance contracts
protecting both production and price risks. The NN72 contract has the 3-hidden-layer (64-64-16 neurons)
structure, as in the baseline model. The Linear72 is a linear contract with all 72 weather indices. Panel
A summarizes utilities with and without (w/o) different index insurance policies and the percentage of
utility improvement. Panel B summarizes certainty equivalent wealth (CEW) with and without (w/o) index
insurance policies and the CEW improvements in dollars and as a percentage. Panel C summarizes policy
characteristics, including premiums, coverage, and profits for the insurer. Panel D summarizes the risk
reduction effect of different index insurance policies, measured by the standard deviation of wealth. Panel
E summarizes the risk reduction at the tail, measured by the 5%-level value-at-risk (VaR). The risk loading
parameter at equilibrium (A*) for each contract is reported in parentheses. The sample period is 1980-2017.

Contract NN72 (A\* =1.4137) Linear72 (A\* = 1.3791)
Data Training Test Training Test
Panel A: Utility improvement

U with insurance -4.32 -4.37 -4.68 -4.63
U w/o insurance -5.05 -5.15 -5.05 -5.15
U improvement (%) 14.41%  15.25%  7.47% 10.11%
Panel B: CEW improvement

CEW with insurance 420.50 419.32 410.76 411.95
CEW w/o insurance 401.05 398.63 401.05 398.63
CEW improvement 19.46 20.68 9.71 13.32
CEW improvement (%)  4.85% 5.19% 2.42% 3.34%
Panel C: Policy characteristics

Premium 42.28 40.53 41.33 38.15
Coverage 29.91 28.67 29.97 27.66
Insurer Profit 12.37 11.86 11.36 10.49
Panel D: Risk reduction measured by standard deviation

Std 100.67 102.83 110.20 112.46
Std w/o insurance 132.67 132.65 132.67 132.65
Std reduction 24.12%  22.48%  16.94% 15.22%
Panel E: Risk reduction measured by Value-at-Risk (VaR)

VaRs, 333.10 299.72 289.48 288.87
VaRjs% w/o insurance 256.32 251.00 256.32 251.00
VaRsy improvement 76.79 48.71 33.17 37.86
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Figure M.1: Basis risk of index insurance protecting both production and price
risks. These figures plot the insurance payoffs against actual loss, over the training or test
set. The index insurance is designed to protect both production and price risks. The NN72
contract has a 3-hidden-layer (64-64-16 neurons) structure, as in the baseline model. The
Linear72 is a linear contract with 72 weather indices.
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N Regulatory costs

The NN-based insurance contract seems to be more complicated than traditional insur-
ances and such contract complexity might increase litigation risks and regulatory frictions.
In this section, we further evaluate the impacts of tightening regulatory costs. We quantify
the regulatory costs of contract complexity by the regulatory capital reserve. The Solvency
IT directive has the solvency capital requirement (SCR) to achieve solvency with a 99.5%
probability over a one-year horizon. SCR serves as a “soft” supervisory specification, and in
practice the actual capital that an insurer has to hold is capped and floored at 50% and 20%
of SCR (Towers Watson|2010). In this section, we test the impacts of supply-side frictions
when an insurer reserves regulatory capital amounted to {20%, 35%, 50%} of the SCR. We

assume the regulatory costs will be priced into the insurance premium, 7. (7), as follows,

Te(I) == % Z I(x;) + Regulatory Capital Holding x Cost of Capital.
j=1
We assume the insurer’s cost of capital is 7%, which is the industry’s weighted average cost
of capital, according to S&P Global Ratings.
Results are summarized in Table [N.I] We see that the farmer’s utility and CEW im-
provements decrease with the regulatory capital holding. But, the index insurance remains
effective in utility improvement and basis risk reduction even with the presence of additional

regulatory costs.

39



Table N.1: Impacts of regulatory costs. This table presents the impacts of regulatory costs, captured
by the regulatory capital reserve of insurers. Columns 2-7 display results for different regulatory capital
holding levels as a percentage of solvency capital requirement (20%, 35%, and 50%). The last two columns
correspond to our baseline model without regulatory costs. Panel A summarizes utilities with and without
(w/o) different index insurance policies and the percentage of utility improvement. Panel B summarizes CEW
with and without (w/o) index insurance policies and certainty equivalent wealth (CEW) improvements in
dollars and as a percentage. Panel C summarizes policy characteristics, including premiums, coverage, and
profits for the insurers (net of regulatory cost). Panel D summarizes the risk reduction effect of different index
insurance policies, measured by the standard deviation of wealth. Panel E summarizes the risk reduction at
the tail, measured by the 5%-level value-at-risk (VaR).

Capital Reserving (as % of SCR) 20% 35% 50% BL

Data Training  Test  Training  Test  Training  Test  Training  Test
Panel A: Utility improvement

U with insurance -3.58 -3.59 -3.59 -3.61 -3.60 -3.61 -3.57 -3.57
U w/o insurance -3.99 -4.16 -3.99 -4.16 -3.99 -4.16 -3.99 -4.16
U improvement (%) 10.22% 13.85% 9.93%  13.38%  9.60% 13.17% 10.60% 14.35%
Panel B: CEW improvement

CEW with insurance 444.10  443.90  443.70  443.22  443.25 44291  444.64  444.61
CEW w/o insurance 430.63 42526  430.63 42526  430.63 42526  430.63  425.26
CEW improvement 13.47 18.64 13.07 17.96 12.62 17.65 14.00 19.36
CEW improvement (%) 313% 4.38%  3.03%  4.22%  2.93%  4.15%  3.25%  4.55%
Panel C: Policy characteristics

Premium 29.40 29.40 29.73 29.46 30.09 29.83 28.44 28.72
Coverage 23.21 23.22 23.13 22.92 23.08 22.86 22.91 23.13
Insurer Profit 5.60 5.61 5.58 5.53 5.57 5.52 5.53 5.59
Panel D: Risk reduction measured by standard deviation

Std 53.77 47.71 53.75 48.39 53.82 48.18 54.05 47.49
Std w/o insurance 81.94 78.92 81.94 78.92 81.94 78.92 81.94 78.92
Std reduction 34.38%  39.55% 34.41% 38.68% 34.33% 38.95% 34.04% 39.82%
Panel E: Risk reduction measured by Value-at-Risk (VaR)

VaRs9 382.94  376.51  382.39  375.72  381.93 374.85 382.89 379.64
VaRjsy, w/o insurance 316.28 32591  316.28 32591  316.28 32591  316.28  325.91
VaRsy improvement 66.67 50.60 66.11 49.81 65.65 48.94 66.61 53.73
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O Performance of other machine learning models

In this section, we consider alternative machine learning models that could capture high-
dimensionality and nonlinearity. We focus on regression tree models and support vector
machine (SVM), as our purpose is not to run an exhaustive comparison between NN and
other machine learning methods. We consider different tree-based models, including a sim-
ple regression tree, tree bagging, random forest, and tree boosting (Rossi and Timmermann
2015|, |Rossi and Utkus[2021}, [Li and Rossi 2021}, Cong et al. 2022)f_f] Tree “bagging”, short for
bootstrap aggregation, involves bootstrapping many training samples, building a separate
tree model using each training set, and averaging their predictions. Random forest improves
over tree bagging by decorrelating the bagged trees. This is achieved by randomly draw-
ing some predictors at each splitting branch. Tree boosting improves the performance of
regression tree models by sequentially combining a series of simple, small trees. For detailed
introduction of different tree-based models, see Hastie et al.| (2009) and (Gu et al.| (2020]).

Table[O.1] presents the results. The utility improvements in the test set are 5.70%, 6.00%,
8.61%, 7.95% and 6.73% for single tree, tree bagging, random forest, tree boosting, and SVM,

respectively. Comparing with the results in Table 4, we see:

1. Tree models and SVM perform better than low-dimensional linear models (the utility
improvement is 0.55% for Linear! and 3.08% for Linear5) and polynomial models (the
utility improvement is 3.28% for Quad5 and 3.84% for Cubic5), due to their ability to

capture high-dimensionality and non-linearity.

2. Among tree models, random forest and tree boosting perform best and their perfor-
mances are similar to the high-dimensional linear model Linear72 or the low-dimensional

NN model NN5&.

4Rossi and Timmermann| (2015) use boosted regression trees to construct the covariance risk measure in
an intertemporal CAPM setting. [Rossi and Utkus| (2021) use boosted regression trees to explain the cross-
sectional heterogeneity in the effects of robo-advising on portfolio allocations and investment performance.
Li and Rossi (2021) use boosted regression trees to predict mutual fund performances. |Cong et al.| (2022)
consider the cross-sectional dependence structure among asset returns in tree-based models and highlight
the importance of sequential sorting offered by tree-based models.
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3. Overall, all tree models and SVM perform worse than NN72.

These results are in line with the literature. For example, Bianchi et al.| (2021) mention that
tree-based methods and NN are the best-performing methods. |Gu et al. (2020)) also find
that trees and NN improve predictions but NN dominates tree-based methods.

The underperformance of tree-based models relative to NN models may be due to the
fact that individual features might not be good predictors compared to linear combinations
of features in our problem (Hastie et al.2009). In addition, NN-based models yield smooth
outputs which are desirable for designing insurance payoff functions. Therefore, we choose
NN72 as the baseline model. However, one must be cautious that the above comparison
doesn’t consider the model complexity and interpretability, which could make tree-based

models more favourable.
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P Contract complexity measured by payout uncertainty

In Section 6.1.1, we assess the impact of contract complexity by considering the perceived
value reduction effect in the index insurance payout. An alternative way to capture contract
complexity is to add payout uncertainty. From the farmers’ perspective, a highly complex
contract that they do not understand effectively increases their perceived uncertainty about
the insurance payout (Kubitza et al.2020). More specifically, let € ~ N(0,c?) denote the
experienced contract complexity, then conditional on their imperfect perception of the insur-
ance contract, farmers’ subjective beliefs about the indemnity payment is I(X) = I(X) +e,
where I(X) is the designed NN-based index insurance payout. Larger complexity aversion
is represented by a larger value of o, indicating more difficulty for farmers to understand an
insurance contract. We test different levels of payout uncertainty, i.e., . = 10, 20, 30 and
40, which correspond to one half, 1, 1.5, and 2 times of expected insurance loss, respectively.
Table [P.I] summarizes the results.

Results in Table are largely consistent with Section 6.1.1. When complexity aversion
increases, farmers’ utility improvement from purchasing this insurance decreases. Neverthe-
less, even in the worst case when o. = 40, this NN-based insurance still performs similarly

to NN and Linear72 and better than Linear!, Linear5, Quadratich, and Cubics in Table 4.
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Q Out-of-state tests with a distant state

Our out-of-state tests in Section 5.1 show that NN-based insurance trained on Illinois
data can work reasonably well in adjacent states. In this appendix, we perform an alternative
distant out-of-state test. That is, we use North Dakota, a state in corn belt but geographically
distant from Illinois, as a negative test sample. More specifically, we conduct the following
two tests. First, similar to the adjacent state tests, we train an NN-based index insurance
contract based on Illinois data and test its performance using the data from North Dakota.
Second, we train and test an NN-based index insurance based on the data from North Dakota.
Results of these two tests are presented in Table [Q.1]

As expected, Columns (3) and (4) show that the North Dakota-trained model achieves
performance similar to our baseline results in Illinois. It improves farmers’ utility by 12.40%
(11.04%) in the training (test) sample. This suggests the generality of our index insurance
design framework. However, Columns (1) and (2) show that the Illinois-trained model does
not perform well in the test sample of North Dakota. For example, Column (2) shows
that farmers’ utility with insurance is lower than the case without insurance. This is not
surprising because the weather patterns and the interaction of different weather indices as
well as nonlinear mapping of weather indices to production losses in these two states are very
different, due to their distant geographical locations. The latitude and longitude of Illinois
are 47.5515°N and 101.0020°W, respectively, while for North Dakota, they are 40.6331°N,
89.3985°W. Also, the distributions of weather indices exhibit significant differences between
linois and North Dakota, as summarized in Table and Figure For example, a low
precipitation event recognized as an indicator of a large loss by the Illinois-trained model,
may not be considered as a low precipitation event in North Dakota because precipitations

are generally much lower there.
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Table Q.1: Out-of-state tests, using a distant state. We compare the performances of different
NN-based insurance contracts. Column (1) uses Illinois data to train the model and then Column (2) tests
the model in North Dakota. Column (3) uses North Dakota data to train the model and then Column
(4) tests the model in North Dakota. Panel A summarizes utilities with and without (w/o) different index
insurance policies and the percentage of utility improvement. Panel B summarizes CEW with and without
(w/o) index insurance policies and certainty equivalent wealth (CEW) improvements in dollars and as a
percentage. Panel C summarizes policy characteristics, including premiums, coverage, and profits for the
insurers. Panel D summarizes the risk reduction effect of different index insurance policies, measured by the
standard deviation of wealth. Panel E summarizes the risk reduction at the tail, measured by the 5%-level
value-at-risk (VaR).

(1) Training (2) Test (3) Training (4) Test
Data Illinois North Dakoda North Dakoda North Dakoda
Panel A: Utility improvement
U with insurance -3.55 -3.86 -3.20 -3.23
U w/o insurance -4.02 -3.63 -3.66 -3.63
U improvement (%) 11.63% -6.41% 12.40% 11.04%
Panel B: CEW improvement
CEW with insurance 445.21 434.58 457.98 456.97
CEW w/o insurance 429.75 442 .35 441.43 442 .35
CEW improvement 15.46 -7.76 16.55 14.62
CEW improvement (%) 3.60% -1.76% 3.75% 3.31%
Panel C: Policy characteristics
Premium 29.09 34.35 37.99 34.86
Coverage 23.43 27.67 31.17 28.60
Insurer Profit 5.66 6.68 6.82 6.26
Panel D: Risk reduction measured by standard deviation
Std 51.29 107.29 84.72 75.15
Std w/o insurance 80.60 103.22 112.66 103.22
Std reduction 36.36% -3.95% 24.80% 27.19%
Panel E: Risk reduction measured by Value-at-Risk (VaR)
VaR59 381.12 313.13 356.71 368.76
VaRsy w/o insurance 317.70 306.56 287.07 306.56
VaR5y improvement 63.42 6.57 69.64 62.20

47



Table Q.2: Comparing weather conditions in Illinois and North Dakota. This table summarizes
annual weather conditions in Illinois and North Dakota, including mean, standard deviation (Std), median
(Qs0), 256% quantile (Qq5), and 75% quantile (Qrs).

Panel A: Annual summary of weather for Illinois

pcpn dpt tmin vpdmax vpdmin tmax
Mean 82.57 5.24 5.79 12.40 1.06 17.44
Std 50.51  9.12 9.35 7.88 0.65 10.59
Qas 45.66  -2.52  -2.11 4.93 0.58  7.95
Qso 7287 5.08  6.12  12.05 0.91 1891
Qrs 108.88  13.95 14.57 18.56 1.40 27.33

Panel B: Annual summary of weather for North Dakoda
pcpn dpt tmin vpdmax vpdmin tmax
Mean 37.05 -1.99 -1.80 10.74 0.88 11.32
Std 35.13  10.32  11.40 8.71 0.74 13.06
Qas 10.88 -10.17 -11.39 2.50 0.33 -0.50
Qs0 24.81 -1.78 -0.64 9.39 0.66 13.17
Qs 5359 753 854 16.97 1.23  23.16
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Figure Q.1: Precipitation and temperature in Illinois and North Dakota. These
panels compare the distribution densities of precipitation (Panel (a)) and temperature (Panel
(b)) in Illinois and North Dakota.
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