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Abstract

Uncertainty affects business cycles and asset prices. We estimate firm-level productivity and
decompose total uncertainty risk measured as cross-sectional productivity dispersion into macro
uncertainty (an aggregate component) and micro uncertainty (an idiosyncratic component).
We find that macro uncertainty is strongly countercyclical and priced among stocks, but micro
uncertainty is acyclical and not priced. Moreover, we show that the expected investment growth
factor proposed in[Hou, Mo, Xue, and Zhang] (2021) captures macro uncertainty risk which helps

us understand the success of the ¢®-model.

JEL classification: G12, E20, E24, E32, D24

Keywords: macro uncertainty, micro uncertainty, expected investment growth factor, risk premium

*Department of Finance, School of Business and Management, Room 5075 Lee Shau Kee Business Building, Hong
Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Tel.: +852-2358-7670; Fax:
+852-2358-1749; E-mail: chenzhanhui@Qust.hk.

TMelntire School of Commerce, University of Virginia, Rouss & Robertson Halls, East Lawn, Office 323, Char-
lottesville, VA 22904 and and the Faculty of Business and Economics, University of Melbourne. Tel.: 434-243-4043;
E-mail: mgallmeyer@virginia.edu.

#Department of Finance, School of Management, Room 637 Jiageng Building 2, Xiamen University, China. E-mail:
baeckchun@e.xmu.edu.cn.


mailto:chenzhanhui@ust.hk
mailto:mgallmeyer@virginia.edu
mailto:baekchun@e.xmu.edu.cn

Uncertainty coincides with business cycles (Bloom, 2009; [Fernandez-Villaverde et al., 2015 Basu

and Bundick, 2017; Bloom et al., 2018} | Diercks et al.| |2023[)E| and affects asset prices as well (Bansal

land Yaron, 2004} |Segal et al., 2015 Bali et al., |2017, 2021; Bretscher et all [2023). Uncertainty

includes both macroeconomic and microeconomic components. Previous studies such as
(2018)) use both components to match business cycle fluctuations theoretically by assuming
a significant role for micro uncertainty relative to macro uncertainty under the assumption that

both are driven by a common latent process. However, these two uncertainty measures seem to be

distinct as discussed in |[Kozeniauskas et al.|(2018)). Given their difference is understudied, this paper

aims to fill this gap by examining these two components from an asset pricing perspective. We first
estimate firm-level productivity and then decompose uncertainty risk measured as cross-sectional
productivity dispersion into macro uncertainty (an aggregate component) and micro uncertainty
(an idiosyncratic component). We find that macro uncertainty is strongly countercyclical and priced
among stocks, but micro uncertainty is acyclical and not priced. This challenges the importance of
micro uncertainty over business cycles.

To motivate our empirical work, we consider a simple production economy with time-varying
productivity volatilities to study the impact of uncertainty on consumption, investment, and asset

prices. An interplay between productivity shocks and uncertainty shocks, similar to the leverage

effect (e.g., Black, 1976, (Christie, [1982; Harvey and Shephard, [1996), is crucial to our analysis.

That is, there are two different and yet related fundamental shocks in this economy, namely, a
productivity shock and an uncertainty shock. For example, in recessions, low productivity often

accompanies high economic uncertainty. The increasing risk caused by high uncertainty leads to

!The causality is unclear, asBloom et al|(2018) discuss. Uncertainty might lead to business fluctuations. Alterna-
tively, uncertainty may arise endogenously from business cycles. Many papers find that the cross-sectional dispersions
of firm- or establishment-level variables, like productivity, output, prices, employment, and business forecasts, appear
to be countercyclical (Bloom) |[2009; Bachmann and Bayer, |2013; [Bachmann et al., [2013; Bachmann and Bayer} [2014;
[Kehrig), [2015} [Bloom et al., [2018} David et al 2022).




a higher expected stock return and a lower current investment rateE| which in turn implies higher
expected investment growth in the future. Therefore, both the investment rate and expected
investment growth are needed to capture these two fundamental shocks. Also, we find that expected
stock returns positively covary with expected investment growth via an uncertainty channel. We
test this prediction with the expected investment growth (EG) factor proposed in the ¢°-model of
Hou et al.| (2021)). We find evidence that the pricing power of the EG factor is driven by macro
uncertainty risk. This provides an alternative way to understand the success of the EG factor and
the ¢g°-model.

Empirically, we follow Bloom (2014) to measure uncertainty as time-varying volatilities (see,
e.g., Bloom, 2009; Jurado et al 2015; Bloom et al., 2018). Uncertainty contains two components
— macro and micro uncertainty shocks. Macro uncertainty refers to the aggregate uncertainty
in the economy, which is often measured over an aggregate index such as aggregate productivity
or stock market volatility. Macro uncertainty is countercyclical (Bloom et al., |2018|) and its asset
pricing power is well accepted as it changes investors’ future consumption growth and investment
opportunities (Bansal and Yaron, 2004; Segal et al., 2015 Bali et al.l 2017, 2021).

In contrast, micro uncertainty captures uncertainty about idiosyncratic volatility. Although
idiosyncratic volatility might appear to be priced due to missing factors or a common volatility
factor as discussed in |Chen and Petkoval (2012) and Herskovic et al.| (2016), it is unclear whether
micro uncertainty is priced. In particular, the empirical measure of micro uncertainty used often
clouds the results. For example, Bloom et al. (2018]) uses the cross-sectional dispersion of micro-
level data (e.g., establishment- or firm-level productivity) to measure micro uncertainty and finds
micro uncertainty is countercyclical, suggesting a pricing role for micro uncertainty. However, such

a micro uncertainty measure is contaminated with macro uncertainty, since micro level productivity

2Note that investment could also decrease with uncertainty initially by adding fixed adjustment costs (see, e.g.,
Bloom et al.| (2018)) or when capital utilization is flexible (Segal and Shaliastovichl 2022).



contains both systematic and idiosyncratic productivityﬁ This calls for a clean measurement of
micro uncertainty to help us understand whether micro uncertainty matters.

Guided by this observation, we use firm-level data to differentiate micro and macro economic
uncertainty in two steps. First, we estimate firm-level total factor productivity (TFP) following
Olley and Pakes|(1996) and Imrohoroglu and Tiizel (2014)) at an annual frequency. Total uncertainty
is measured as the cross-sectional standard deviation of these TFP shocks. Second, we apply
an asymptotic principal component analysis as in |Connor and Korajczyk (1987)), Herskovic et al.
(2016), and |Chen et al.| (2018) to estimate the systematic and idiosyncratic TFP components across
all firms. We identify six principal components of productivity ShOCkSH Macro (Micro) uncertainty
is measured as the cross-sectional standard deviation of systematic (idiosyncratic) productivity
shocks. Figure [1| demonstrates that macro uncertainty (total uncertainty) is countercyclical, with
a correlation coefficient of -0.26 (-0.10) with industrial production growth. Micro uncertainty is
almost acyclical (the correlation coefficient with the industrial production growth is 0.004). That is,
uncertainty is high during recessions and this is driven mainly by macro uncertainty. This suggests
that macro uncertainty and not micro uncertainty relates to business cycles.

Using the annual non-tradable uncertainty factor, we run Fama-MacBeth two-pass regressions
to test its pricing power by matching stock returns with lagged uncertainty risk. We augment five
cross-sectional asset pricing factor models with the total uncertainty factor, the macro uncertainty
factor, or the micro uncertainty factor. The factor models include the Fama and French) (1993)
three-factor model (FF3), the Carhart| (1997)) four-factor model (FF4), the Fama and French| (2015)
five-factor model (FF5), the Fama and French| (2018) six-factor model (FF6), and the [Hou et al.

(2015) g-factor model (HXZ). We find that total uncertainty risk is negatively priced, with a price

3Schaabl (2020) illustrates that aggregate uncertainty can be transmitted to heterogeneous households via unem-
ployment risk and wage volatilities. Therefore, household-level uncertainty also contains macro uncertainty.

4Chen and Kim| (2020) show that this decomposition reasonably captures aggregate and idiosyncratic productivity
shocks.



of -4.55% to -9.32% per year. Macro uncertainty is also negatively priced, with a price of -8.29% to
-13.93% per year. Augmenting these factor models with a macro uncertainty factor improves their
performances. For example, pricing errors are insignificant for the augmented FF5, FF6, and HXZ
models. In particular, the price of macro uncertainty risk increases during recessions, as shown in
Figure [3| However, micro uncertainty is not priced.

To allow for empirical tests at the monthly frequency, we construct mimicking factors for total
uncertainty, macro uncertainty, and micro uncertainty following Adrian et al.| (2014 and |Chen
and Yang (2019). The annual Sharpe ratios of the total uncertainty and macro uncertainty factors
are sizable, -0.35 and -0.39, respectively, but micro uncertainty has a Sharpe ratio of only -0.03.
Cross-sectional asset pricing tests further show that prevailing factor models, including the CAPM,
the Fama-French models (FF3, FF4, FF5, FF6), the Stambaugh and Yuan (2017)) mispricing factor
model (SY), and the Hou et al| (2015) g-factor model (HXZ), can explain the micro uncertainty
factor, but not the macro uncertainty factor. Augmenting these factor models with a mimicking
macro uncertainty factor also improves their performance. For example, in the full-sample estima-
tion, pricing errors are insignificant for the augmented FF3, FF4, FF5, FF6 and HXZ models. We
further show that the pricing power is not spuriously driven by noisy factors.

We find an economic linkage between macro uncertainty and the expected investment growth
factor in [Hou et al. (2021)). First, we show that macro uncertainty contributes to the pricing power
of the expected investment growth factor. After controlling for macro uncertainty, the residual of
the expected investment growth factor is not priced. Second, we find that the predictors of expected
investment growth in Hou et al.|(2021) capture cross-sectional productivity dispersion (e.g., macro
uncertainty), especially the operating cash flow component. Finally, we show that the HXZ model
augmented with the macro uncertainty factor can fully explain the expected investment growth

factor. This augmented model performs similarly to the Hou et al.| (2021) ¢°-factor model. Overall,



we provide evidence that the expected investment growth factor captures macro uncertainty risk.

Our paper belongs to a growing literature on economic uncertainty. Bloom| (2009), Fernandez-|

\Villaverde et al| (2015), Basu and Bundick| (2017)), Bloom et al.| (2018), and Diercks et al.| (2023)

study the impact of uncertainty on business cycles. Kozeniauskas et al. (2018]) shows that vari-

ous macro uncertainty, micro uncertainty, and higher-order uncertainty measures are distinct and

some are statistically uncorrelated. Dew-Becker and Giglio (2022) shows that cross-sectional uncer-

tainty, measured using option data, does not forecast overall economic activity as well as aggregate
uncertainty.

Other works examine the asset pricing implications of aggregate uncertainty shocks. For exam-

ple, Bansal and Yaron| (2004) considers the equity premium implied by the conditional volatility

of consumption growth. Bekaert et al. (2009)) shows that economic uncertainty contributes to the

term structure and countercyclical volatility of asset returns. Hartzmark (2016)) shows that higher

uncertainty leads to lower interest rates. Bali and Zhoul (2016) shows that economic uncertainty,

proxied by the variance risk premium, is significantly priced. Dew-Becker et al. (2017)), Berger]

et al. (2019)), and Dew-Becker et al. (2021) differentiate between uncertainty and realized vari-

ance using data from equity derivative markets. They show that realized variance has a negative

premium, while aggregate uncertainty carries a zero or a positive premium. [Segal et al. (2015

differentiate good and bad uncertainty arising from positive and negative industrial production

growth. |Alfaro et al| (2023) considers real and financial frictions to amplify the impacts of uncer-

tainty shocks. (2020) considers the transmission and interaction of aggregate uncertainty

and household-level uncertainty. Bretscher et al.| (2023 show that uncertainty shock affects risk

premium, especially when it is combined with countercyclical risk aversion. More closely related to

our work, Bali et al.| (2017) and Bali et al.| (2021)) find that macroeconomic uncertainty is priced in

the cross section of stocks and corporate bonds using the Jurado et al. (2015) uncertainty index.




Herskovic et al.| (2023) considers uncertainties of aggregate consumption growth and firm-specific
productivity shocks, and shows that the former drives the size and the value premia while the lat-
ter contributes to the equity premium. Our paper contributes to this literature by differentiating
macro and micro uncertainty and shows that micro uncertainty does not matter for asset prices.

Our paper also follows in the tradition of the production-based asset pricing literature such as
Cochrane (1991)), |Cochrane| (1996)), Berk et al. (1999)), |Zhang| (2005), and [Liu et al.| (2009). The
neoclassical theory of investment stresses that production risks drive stock risks. Hou et al.| (2015])
and [Hou et al.| (2021) construct pricing factors based on firm investment, profitability, and expected
investment growthﬁ Our paper adds to this literature by studying the role of uncertainty shocks.

Lastly, our paper also contributes to the large literature on the empirical performance of cross-
sectional asset pricing factor models. For example, |[Fama and French| (2015) constructs a five-factor
model based on the dividend discount model/surplus clean accounting method, including a market
factor, a size factor, a value factor, an investment factor, and a profitability factor. [Fama and French
(2018)) further adds a momentum factor to their five-factor model. Hou et al.| (2015)) proposes a
g-factor model motivated by the ¢g-theory of investment, including a market factor, a size factor, an
investment factor, and a profitability factor. |Hou et al.| (2021)) further adds an expected investment
growth factor to their g-factor model to create their ¢° model. |Stambaugh and Yuan| (2017) studies
a four-factor model, which includes a market factor, a size factor, and two mispricing factors.
Overall, these factor models perform well in explaining a host of anomalies. Our paper suggests
that the macro uncertainty factor is missing from most models with the notable exception of the
Hou et al.| (2021) ¢° model as we show that macro uncertainty risk contributes to the pricing power
of their expected investment growth factor in the ¢® model.

The rest of the paper proceeds as follows. Section [I] presents a production-based model to ex-

JLi et al. (2021) considers the impact of investment lags and show that aggregate expected investment growth
negatively predicts future market returns due to firms’ investment plans.



plore the linkage between uncertainty shocks, expected investment growth, and asset prices. Section
describes the data and the procedures used for estimating various uncertainty measures and their
estimates. Section [3] presents cross-sectional asset pricing tests, using non-tradable uncertainty
factors. Section [4] tests the pricing power of the uncertainty factors, using mimicking portfolios.
Section [5] explores the relationship between the macro uncertainty factor and the expected invest-

ment growth factor. Finally, Section [6] concludes.

1. Uncertainty shocks, expected investment growth, and asset

prices: A motivating model

We consider a simple production economy to illustrate the role of uncertainty shocks on expected
investment growth and asset pricesﬁ We assume an all-equity representative firm which operates in
discrete time with an infinite horizon. The firm generates output according to a constant returns to
scale production function: Y; = X; K;. Y; and X; are the firm’s output and total factor productivity
at time t, respectively. K; is the productive capital at the beginning of time ¢.

Logarithmic productivity, In X;, follows a first-order autoregressive model (AR(1)), with time-

varying volatility oy:

InXi1 = pelnXy+1(07 —0%) +0reptrn, (1)

0'152+1 = (1 - pa) 0'2 + pPo 0'752 +VEstt1, (2)

where 0 < p, < 1 and 0 < p, < 1 are the AR(1) coefficients, o2 is the long-run average volatility,
v is a constant, €, 41 and 5441 are i.i.d. N(0,1) exogenous shocks. Eq. assumes a stochastic

volatility process (see, e.g., Fernandez-Villaverde and Guerrén-Quintana (2020)) which describes the

SFor simplicity, this model is not designed to capture all empirical features. See Appendix [A| for a general
equilibrium model.



macro uncertainty shock. Similar to | Bansal and Yaron (2004), for analytic tractability, we assume
an AR(1) process for uncertaintyﬂ We also assume 0 < p, < 1, which is similar to the consecutive
uncertainty shocks considered by Diercks et al. (2023)E| One important feature of the model is that
uncertainty affects productivity growth, as captured by the second term in the right-hand side of
Eq. . This is similar to the leverage effect (e.g. Black, 1976} Christiel, 1982; Harvey and Shephard,
1996). Economic recessions often feature high uncertainty and low productivity contemporaneously
with productivity increasing in the future. Therefore, high uncertainty is associated with low
productivity contemporaneously and but high productivity in the future, suggesting that n > 0 in
Eq. .

Productive capital evolves as Ky11 = I} + (1 — §) Ky, with a quadratic capital adjustment cost
of § (%)2 K, where I; is investment at time ¢, § is the depreciation rate, and a is a constantH
The dividend is given by Dy =Y; — I; — § (%)2 K. For a given stochastic discount factor My,

the firm chooses the optimal investment to maximize the present value of future dividends:

0
D+ E M ;Do 3
In;j‘X ¢ 4 It Z[ t+i t-‘rz] ( )

i=1
From the firm’s first order conditions, the marginal cost at time t of adding an additional unit
of productive capital at time ¢ + 1 is 1 + al%, which defines the marginal ¢ at time t:

I

2
The value of an additional unit of productive capital at time ¢ + 1 is X¢y1 + § ( II;:J + (1 -

" Admittedly, the realizations of volatility could be negative in this case. This assumption can be easily relaxed
by assuming the logarithmic volatility satisfies an AR(1) process in a numerical model or adopting an autoregressive
gamma process for volatility as in |Gouriéroux and Jasiak| (2006).

8Diercks et al| (2023) show that uncertainty shocks in consecutive periods are superadditive, i.e., amplifying
uncertainty effects.

9We do not consider time-to-build. [Chen| (2016) and [Li et al.| (2021) consider investment lags.



J) [1 +a (éﬁ—i)} , where the first term captures the marginal productivity, the second term captures
the capital adjustment costs that are saved, and the last term captures the continuation value of

productive capital. Therefore, the real investment return, RtI 41, 18

2
X+ 8 (#2) + -0 [14+a (2 )]

RtI1:
+ 1+a11{—tt

()

Cochrane (1991) and Restoy and Rockinger| (1994) show that stock returns equal real investment
returns when production is constant returns to scale. Therefore, Eq. also computes the stock
return Ry4.

Using a log-linearized version of the economy, we solve for the investment rate, expected invest-
ment growth, and the expected stock return. Let V; denote logarithmic deviations of variable V'
from its steady state. Given the three state variables (productivity X, productive capital K;, and

uncertainty o?), optimal investment can be approximated as:

jt = IO + IxXt + ka{t + IO'O-tQ’ (6)

where Iy, I, I, and I, are coefficients to be solved (in fact, I = 1 due to constant returns to scale

production). Therefore, the optimal investment rate is

L . .
L — K, =Iy+ 1,X,+ Lo} (7)

Appendix[A]shows that I, > 0 and I, < 0 under very mild technical conditions. That is, investment

increases with productivity shocks but decreases with uncertainty shocks. Expected investment



growth is

I 1

E -t
"Kia K

] = I,(1 = py)o” + (pr — 1) LX; + [(ps = 1) I + Lyn) o7 (8)

As I, >0,0<p, <1, 7>0,1, <0and 0 < p, <1, expected investment growth decreases with
productivity shocks but increases with uncertainty shocks.

Log-linearizing Eq. gives the expected stock return:

. ad h
Blfen] = (n= )t (10— o) = (2 L) ] o2
h ad B ad h
Pz hIa: x_ijcc X ha_i IO' N hIa: 27
Lt v = gt e { o 1 (G0 ) n o0
prductivity shock uncertainty shock
where h = WM. Since 0 < h < %, 0<p,<1,1, <0, I, >0andn >0, the expected

stock return increases with uncertainty shocks.

In this economy, two fundamental risks drive the investment rate, expected investment growth,
and the expected stock return, namely the productivity shock X, and the uncertainty shock af
Taking Eq. , , and @ together, we see that when there are productivity shocks only (i.e.,
no uncertainty shocks), either the investment rate or the expected investment growth rate alone
is a sufficient statistic for productivity shocks. That is, either the investment rate or the expected
investment growth rate is sufficient to fully capture expected stock returns. However, in the presence
of uncertainty shocks, both the investment rate and expected investment growth are necessary
and sufficient to fully capture these two shocks and hence expected stock returns. This suggests
using firm characteristics such as the investment rate and expected investment growth rate as

pricing factors. In other words, the pricing power of the investment factor and the expected

10 Again, due to constant returns to scale production, the capital stock does not affect expected stock returns, i.e.,
no size effect. Empirically, the capital stock generally matters for asset prices providing a potential explanation of
the size factor.
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investment factor in the g°-model is due to their abilities to capture the fundamental risks, i.e.,
productivity shocks and uncertainty shocks. In a similar vein, other empirical factors (for example,
the profitability factor), might also incorporate these two risk sources and appear to be priced.
Examining the impact of the uncertainty shock, i.e., the coefficients of o7 in Eq. , , and @,
we see that when uncertainty increases, the investment rate decreases while expected investment
growth and the expected stock return increase. That is, investment and the stock return are
negatively correlated while expected investment growth covaries positively with the expected stock
return. This provides additional support to the investment factor and expected investment growth

factor used in the ¢>-model of Hou et al. (2021), i.e., via the uncertainty channel.

2. Estimating uncertainty shocks

Following Bloom et al.| (2018)), we first estimate firm-level total factor productivity (TFP). The
cross-sectional dispersion of TFP shocks is then used as a total uncertainty measure. Next, we

decompose total uncertainty into macro and micro uncertainty.

2.1.  FEstimating firm-level TFP and the total uncertainty

We closely follow [Olley and Pakes| (1996) and Imrohoroglu and Tiizel (2014) to estimate firm-
level TFP. Olley and Pakes (1996|) address two endogeneity issues involving TFP estimation. First,
since input factors (labor and capital stock) are contemporaneously correlated, there is a simul-
taneity bias. They estimate the production function parameters for each input factor separately
to address this bias. Second, there is a selection bias, because firms exit or enter the markets
depending on their productivity. |Olley and Pakes| (1996) assume TFP is a function of a firm’s sur-
vival probability and include that in the TFP estimation. Olley and Pakes| (1996) further assume

that (1) TFP is a first-order Markov process; (2) physical capital is predetermined after TFP is

11



observed; and (3) investment reflects information about TFP. Imrohoroglu and Tiizel (2014) apply
Olley and Pakes| (1996]) to estimate firm-level TFP. We follow their estimation procedures with
some modifications.

Assume a Cobb-Douglas production function:

Yie = Zu L KX, (10)
where Y, Zi, Ly, and Ky are value-added, productivity, labor, and capital stock of a firm ¢ at
time ¢t. The productivity contains both systematic and idiosyncratic components. Next, we scale
the production function by its capital stock and take logarithms. We perform this scaling for three
reasons. First, since TFP is the residual term, it is highly correlated with firm size. Second, the

scaling avoids estimating the capital coefficient directly. Third, it mitigates an upward bias in the

labor coefficient. Eq. can be rewritten as

Y, L;
it :ﬁLLOQ it

K, X, + (Bx + Br, — 1)LogK ;s + LogZi;. (11)

Log

Denote Log }?tt, Log IL(”t, LogK, and LogZ; as ykit, Lkiy, ki, and z;. Also, let 51, and (Bx + 51 —1)

be §; and 8. Rewrite Eq. as follows:

ykie = Bilkit + Brkit + zit- (12)

We estimate the labor coefficient (5;) and capital coefficient (8)) using linear regressions. Then,
the logarithmic TFP, 2y, is yki — Bilk;+ — Brki. We estimate TFP using a 5-year rolling window.
Similar to Bloom et al. (2018)), we define the cross-sectional standard deviation of TFP at time

t as the cross-sectional TFP dispersion, i.e., total uncertainty (denoted as UNC). We take the

12



first difference of this cross-sectional TFP dispersion as the total uncertainty shock (denoted as
AUNC). Note that this firm-level TFP dispersion is often used as micro uncertainty in the litera-
ture. However, as we show below, this measure contains macro uncertainty also.

We use annual Compustat data to estimate TFP for common stocks from the NYSE, Amex,
and Nasdaq. To obtain stable estimates, following Bloom et al.| (2018]), we assume all firms follow
the same production function. This will introduce some noise in our estimates, since production
functions may vary across industries and over time. However, as we decompose total uncertainty
into micro and macro components, we expect the measurement errors to be small, especially for
macro uncertainty.

We include all firms except for financial and utility firms (four-digit SIC codes between 6000 -
6999 and between 4900 - 4999)E We exclude firms with assets or sales below $1 million or year-end
stock price lower than $5. Following |Chen and Chen| (2012), we also exclude firms with asset or
sales growth rate exceeding 100% to avoid potential business discontinuities that might be caused
by mergers and acquisitions. The sample period is from 1966 to 2016. The TFP estimates are from
1972 to 2016. The estimated labor coefficient (5; is 0.56 and the estimated capital coefficient B
is 0.38. These estimates are similar to those reported in |Olley and Pakes| (1996), and are in line
with neoclassical models. For example, Bloom et al.| (2018]) assume that the labor coefficient is 2/3
and the capital coefficient is 1/3. During our sample period, the production technology is slightly

decreasing returns-to-scale (5; + B = 0.94). See Appendix [B| for more details.

2.2.  Estimating macro and micro uncertainty

Following Herskovic et al.| (2016)), we decompose firm-level TFP into systematic and idiosyn-

cratic components via the asymptotic principal component analysis of |Connor and Korajczyk

1The results are qualitatively similar if we restrict our sample to manufacturing firms only.
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(1987). This allows us to separate systematic and idiosyncratic productivity. TFP estimates for N

firms over time T, denoted as T F Py, can be decomposed into & principal components:

TFPnt = Bygp X PCyr + €nrs (13)

where TFP is an N x T matrix of TFP, B is an N X k matrix of the sensitivities to aggregate
TFP shocks, PC is a k x T matrix of systematic TFP shocks, and € is an N x T matrix of the

idiosyncratic TFP shock. Next, we calculate 2 = %TFPTTFP and estimate the eigenvector of ).

L

N to obtain unit standard deviations.

We multiply each element of the eigenvectors with

To more precisely estimate the systematic TFP components (PC'), we use firms with more than
10 years of data. We choose six principal components (k = 6), following |Chen and Kim (2020) as
they find that (1) six principal components explain more than 50% of firm-level TFP; (2) there is a
positive contemporaneous correlation between stock returns and systematic TFP growth; and (3)
only the volatility of systematic productivity positively predicts expected stock returns while the
idiosyncratic volatility does not. These findings suggest that six principal components reasonably
approximate the systematic productivity shocks.

After we estimate systematic TFP growth and idiosyncratic TFP growth, we calculate the cross-
sectional standard deviations of systematic TFP growth and idiosyncratic TFP growth, which are
defined as macro uncertainty and micro uncertainty here. Then, we take their first differences to
compute macro and micro uncertainty shocks, denoted as AUNC™® and AUNC™, respectively.

Although idiosyncratic productivity is not priced, it is unclear if micro uncertainty is priced as

micro uncertainty may relate to priced additional state variables.
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2.83.  Uncertainty estimates

Panel A of Table shows that TFP growth (AT F P) has a mean of 0.01 and a standard deviation
of 0.21. TFP growth varies over both the cross section and the time series. The next three rows
present descriptive statistics for uncertainty shocks. Total uncertainty (AU NC') has a mean of 0.00
with a standard deviation of 0.05. Macro uncertainty (AUNC™¢) has a larger standard deviation
of 0.07, while micro uncertainty (AUNC™) only has a standard deviation of 0.03.

Figure [I] shows the time series of the uncertainty shocks and industrial production growth
(IP), including total uncertainty, macro uncertainty, and micro uncertainty. We apply the band-
pass filter of Christiano and Fitzgerald (2003) to these series. Similar to findings in Bloom et al.
(2018), total uncertainty (UNC) is countercyclical, with a correlation coefficient of -0.10 with
1P growthB Therefore, uncertainty is high during recessions. Moreover, we see that macro un-
certainty (UNC™?) is strongly countercyclical, with a correlation coefficient of -0.26, but micro
uncertainty (UNC™) is barely correlated with IP growth, with a correlation coefficient of 0.004.
Total uncertainty being countercyclical is mainly due to macro uncertainty.

Figure [2] plots the cross-sectional standard deviation of stock returns with various uncertainty
measures. We decompose the stock return into systematic and idiosyncratic components by regress-
ing annual stock returns on the |Carhart| (1997)) four-factor model factors. We use the predicted
stock return as the systematic component and the residuals as the idiosyncratic component. We
calculate the cross-sectional standard deviations of stock returns and the two components in each
year, denoted as RD, RD*Y*, and RD'¥°. Panels (a) and (b) of Figure [2| show that total uncer-

tainty and macro uncertainty track the cross-sectional return dispersions quite well. For example,

12Using the detailed Census microdata of manufacturing establishments from 1972 to 2011, [Bloom et al.| (2018)
find that TFP dispersion is negatively correlated with GDP growth with a correlation coefficient of -0.45. Our TFP
dispersion measure differs from Bloom et al.| (2018]) in three ways. First, their TFP is establishment-level while our
TFP is firm-level. Second, they only cover manufacturing establishments, while our sample includes all firms except
financials and utilities. Third, they estimate TFP following [Foster et al.| (2001)).
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the correlation coefficients between UNC' and RD, RD®YS, and RD'¥° are 0.53, 0.56, and 0.59,
respectively. The correlation coefficients between UNC™? and RD, RD*®Y*, and RD™° are 0.56,
0.57, and 0.55, respectively. However, Panel (c) of Figure [2[shows that U NC™ is much less corre-
lated with RD and RD®Y* (the correlation coefficients are -0.04 and -0.12, respectively). Figure
shows that our uncertainty measures are reasonably estimated and comove with the stock return
dispersion measures.

Panel B of Table [I| summarizes the annual correlation coefficients between the uncertainty
measures and cross-sectional asset pricing factors. We consider eleven pricing factors, including:
(1) the six factors in Fama and French| (2018) — the market portfolio (MKT), the size factor
(SMB), the value factor (HML), the investment factor (CMA), the profitability factor (RMW), and
the momentum factor (UMD); (2) the five factors from Hou et al.| (2021) — the market portfolio
(MKT), the size factor (Qarg), the investment factor (Qr4), the profitability factor (Qror), and
the expected investment growth factor (EG); and (3) the univariate mispricing factor (MIS) from
Stambaugh and Yuan| (2017).

Consistent with the predictions in Section (I} Panel B shows that total uncertainty (AUNC)
is positively related to the expected investment growth factor (EG) (a correlation coefficient of
0.29). We also see that macro uncertainty (AUNC™%) is highly correlated with AUNC, with
a correlation coefficient of 0.87. This suggests that total uncertainty is mainly driven by macro
uncertainty. Also, AUNC™® has a pronounced correlation coefficient with EG, 0.25. Third, micro
uncertainty (AUNC™) has negative correlations with AUNC and AUNC™. Also, AUNC™
does not have a strong correlation with EG. Overall, Panel B provides evidence that AUNC™®

captures most of AUNC' and both measures have a significant relationship with the EG factor.
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2.4. Inspecting the uncertainty decomposition

In this subsection, we validate our uncertainty decomposition in three steps. First, we check
if our macro uncertainty measure reasonably captures aggregate uncertainty. To this end, we
obtain aggregate TFP data from the Federal Reserve Bank of San Francisco and following |Bloom
et al.| (2018), we define aggregate uncertainty (UNC?9) as the conditional standard deviation
of a GARCH (1,1) on aggregate TFP. Panel A of Table [2 reports the time-series regressions of
aggregate uncertainty on macro uncertainty (UNC™?) and micro uncertainty (UNC™). Macro
uncertainty positively predicts the aggregate uncertainty while micro uncertainty does not. This is
also confirmed by the correlation between uncertainty shocks and VIX. Panel A of Table [If shows
that total uncertainty and macro uncertainty positively correlate with VIX, with a correlation
coefficient of 0.38 and 0.37, respectively. But the correlation coefficient of micro uncertainty and
VIX is -0.18.

Second, using our TFP estimates, we investigate if total uncertainty is mainly driven by macro
uncertainty. Panel B of Table [2] reports the time-series regressions of AUNC against AUNC™®
and AUNC™:. The univariate regression in Column (1) shows that AUNC™? has a coefficient
of 0.60 (t-statistic=10.11) and the R? is 0.75. This is not surprising given the high correlation
between AUNC and AUNC™ reported in Panel B of Table 1] In Column (2), we add AUNC™
to the regression. The coefficient of AUNC™ is 0.53 (t-statistic=3.11) while that of AUNC™ is
0.73 (t-statistic=9.62). Also, the explanatory power (R2) increases by only 0.06 from Column (1)

to Column (2). Panel B of Table [2| suggests that AUNC' is mainly driven by AUNC™*.
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3. Pricing of uncertainty shocks: Using annual non-tradable un-

certainty factors

We run Fama-MacBeth two-stage regressions to examine the pricing power of uncertainty shocks
using annual non-tradable uncertainty factors, including total uncertainty, macro uncertainty, and
micro uncertainty. We use forty-five portfolios, including six size and book-to-market sorted portfo-
lios, six size and operating profitability sorted portfolios, six size and investment sorted portfolios,
six size and momentum sorted portfolios, six size and expected investment growth sorted portfo-
lios, ten operating accrual sorted portfolios, and five Fama-French industry portfoliosF_g] Following
Lewellen et al. (2010), we add the pricing factors of tested factor models to test assets in order to
restrict the price of risk to be equal to the average factor return. To ensure that uncertainty risk

is strictly observable, we match the uncertainty estimates and stock returns with a six month lag.

We augment the prevailing factor models with the total uncertainty factor, macro uncertainty
factor, or micro uncertainty factor, and compare those to the prevailing factor models. Seven
factor models are considered, including the Fama and French| (1993) three-factor model (FF3), the
Carhart| (1997) four-factor model (FF4), the |Fama and French (2015)) five-factor model (FF5), the
Fama and French! (2018) six-factor model (FF6), the |[Stambaugh and Yuan| (2017) mispricing factor
model (SY)['] the [Hou et al| (2015) g-factor model (HXZ), and the [Hou et al| (2021) ¢° model
(HMXZ). We do not augment the Hou et al.| (2021) ¢° model (HMXZ) since EG and AUNC™ are

highly correlated. We leave our discussion of the ¢° model for Section |5l These macro uncertainty

13We download these portfolios from the following websites:
http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/index.html; http://global-q.org/index.html

Y“For the [Stambaugh and Yuan| (2017) mispricing factor model, we only perform asset pricing tests on monthly
mimicking portfolios for the uncertainty factors in Section [4] as we do not have the constituent portfolios available to
construct annual data.
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augmented factor models are as follows:

FF3+AUNC™*: Ry =7 + 'YMKTBMKT,Z’ + 'YSMBBSMB,i + 'YHMLBHML,i
+ Yungma BUNC’"“I,Z‘ + €it

FF4+AUNC™*: Riy = + 'YMKTBMKT,Z’ + VSMBBSMB,Z’ + ’YH]VILBHML,i + ’YUMDBUMD,i
+ Yungma BUNCma,z‘ + €it

FF5+AUNC™®: Ry =70+ 'YMKTBMKT,z’ + 'YSMBBSMB,i + ’YHMLBHML,i + ’YCMABCMA,i + ’YRMWBRMW,i
+Yuncma BUNC’"“,:’ + €t

FF6+AUNC™*: Ry =+ ’YMKTBMKT,i + ’YSMBBSMB,i + ’YHMLBHML,i + ’)’CMABCMA,i + ’YRMWBRMW,i
+ VUMDBUMD,i + 'YUNC""”BUNC"W,i + €5t

HXZ+AUNC™®: Ry =7+ 'YMKTBMKT,i + “YQMEBQME,i + Q14 BQMJ + ’YQROEBQROE»i
+ YuNCma BUNCma,z' + €t

SY+AUNC™®: Ry =7+ 'YMKTBMKT,i + “YMISMEBMISME,i + 'YMGMTBJWGMT,i + 'YPERFBPERF,i

+YuNncmaBuNcma i + €t

In the first stage, we run the time-series regression of each model to estimate the factor loadings
for each asset using the full sample. In the second stage, we run the cross-sectional regression of
all test assets on the factor loadings each year and then compute the time-series average of the
prices of risk. We adjust the t-statistics following [Shanken| (1992). We report the adjusted R?
from |Jagannathan and Wang| (1996). Following Lewellen et al. (2010), we construct a sampling
distribution of the adjusted R? by bootstrapping the time-series return data and factors by sampling
with replacement to estimate the adjusted R?. We repeat this procedure 10,000 times and report
the 5t and 95" percentiles of the sampling distribution of the adjusted R2. The testing period is
from July 1973 to June 2018.

We report the regression results of the total uncertainty factor in Panel A of Table We
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find yy e is significantly priced across different factor models. The price of total uncertainty risk
ranges from -9.32% to -4.55% per year. Total uncertainty factor also improves model fit. For
example, after adding the total uncertainty factor to FF6, the intercept v9 becomes insignificant
(t-statistic=1.52) while the adjusted R? increases from 0.71 to 0.78.

Panel B of Table [3| reports the results using the macro uncertainty factor. First, we see that
macro uncertainty is negatively priced in all models. The price of macro uncertainty risk yyycoma
is sizable, ranging from -13.93% to -8.29% per year across different augmented factor models.
Second, we see that AUNC™? improves model performance. For example, the pricing error is
insignificant in FF54+AUNC™® (0.71% per year, t-statistic=1.64) and FF6+AUNC™? (0.58% per
year, t-statistic=1.54) . The results in Panels A and B of Table [3| are similar, which again suggests
that the pricing power of total uncertainty is mainly from macro uncertainty risk. In Panel C of
Table [3], we replace the macro uncertainty factor with the micro uncertainty factor. The price of
micro uncertainty risk is negligible and insignificant.

Figure 3| plots the prices of total uncertainty risk (UNC') and macro uncertainty risk (UNC™?)
against industrial production growth. The prices of uncertainty risks are computed from the Fama-
French three-factor model augmented with the uncertainty factor. We see that the correlation
between the price of UNC (UNC™®) and IP growth is 0.27 (0.25). Therefore, during recessions
(when IP growth is low), uncertainty increases and the price of uncertainty risk becomes more
negative. This is consistent with the explanations in [Bali et al.| (2017) and |Alfaro et al.| (2023]).

Overall, these results provide evidence that the macro uncertainty factor explains the various

test assets with a significantly negative price of risk, while the micro uncertainty factor does not.
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4. Pricing of uncertainty shocks: Mimicking uncertainty factors

The previous section used annual non-tradable uncertainty factors to perform asset pricing tests.
However, their statistical power might be limited by the sample size. We now construct monthly
mimicking portfolios for the uncertainty factors. We use mimicking uncertainty factors as our main
estimates in the rest of the paper as the monthly mimicking factors have more statistical power

and allow us to perform additional empirical tests.

4.1.  Constructing mimicking uncertainty factors

As the productivity dispersion shocks are annual, to construct monthly mimicking portfolios,
we follow |Adrian et al. (2014) and |Chen and Yang (2019) by using a projection method. First, we

project the uncertainty shocks (AUNC) onto a set of annual base asset returns:

AUNC = kounc + /€;7UNCX£I + ug, (14)

where X' denotes the annual returns of some base assets in year ¢, and ko ync and Kz unc are
OLS regression coefficients.

We select base assets from [Hou et al.| (2015) and [Hou et al.| (2021)) to track information in
productivity dispersion. As discussed in Section [I|and confirmed in Panel B of Table [I} uncertainty
is highly correlated with the investment factor, the profitability factor, and the expected investment
factor. Therefore, we consider eighteen size, investment, and profitability-sorted portfolios (2-by-
3-by-3) from Hou et al| (2015)) as well as the EG factor from |Hou et al.| (2021)) to extract as much
information as possible from AUN C’IE] However, we can not include all eighteen portfolios as it

induces a multicollinearity problem. Also, we are limited by degrees of freedom as we only have

15We further discuss the rational of using the EG factor as a base asset in Section Limited by the data availability,
we do not consider the mispricing portfolio as a base asset.
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forty-five annual uncertainty shocks.

We start by projecting uncertainty shocks onto each of the eighteen portfolios and the EG
factor. Then we select five of the eighteen portfolios, which have significant coefficients. The
base assets are X{ = [BMH, BLL, BLM, SLM, BLH, EG]. For the first five portfolios, the first
letter indicates the size group, small (S) or big (B); the second letter indicates the investment
group, low (L), medium (M), or high (H); and the third letter indicates the profitability group, low

(L), medium (M), and high (H). After we estimate k. ynyc at an annual frequency, we normalize

Rz UNC

=222 The denominator is the sum of the absolute value of the
|Ykz,unc]

those coefficients: k,pync =
coefficients. The last step is to build the mimicking uncertainty portfolio at a monthly frequency,

by multiplying the normalized coefficients and the monthly base asset returns:

where X" is the monthly returns of the base assets. When we construct the monthly uncertainty
factor, we assume a six month reporting gap between uncertainty shocks and stock returns, following
Fama and French! (1993). We use the monthly mimicking portfolios for the rest of asset pricing
tests. We construct the mimicking macro (micro) uncertainty factor similarly including using the
same base assets.

We estimate the coefficients of Eq. using the full sample. The normalized coefficients
are [0.08, -0.35, -0.23, 0.31, 0.11, -0.91]. We find that the EG factor coefficient is significant and
its magnitude is large at 0.91E We further explore this relationship in Section Overall, the
mimicking portfolio tracks total uncertainty well. The annual correlation coefficient between the
total uncertainty shock and its mimicking portfolio is about 0.32. The annual correlation coeffi-

cient between the macro (micro) uncertainty shock and the mimicking macro (micro) uncertainty

16Note that the negative coefficient of -0.91 is due to normalization in &e unc.
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portfolio is 0.24 (0.29).

To avoid look-ahead bias, we also construct the mimicking uncertainty factors in an expanding
window as a robustness test. The expanding window starts from 1997 to have a sufficient number of
observations. That is, the weights of the mimicking uncertainty factor are estimated from 1972 to
1997 first, then we extend the estimation period up to 2016. To estimate the weights with enough
degrees of freedom for the expanding window, we use five base assets: X{* = [SLL, BMM, SLM,

BLH, EG].

4.2.  Mimicking uncertainty factors

Panel A of Table [4 present descriptive statistics for the mimicking uncertainty factors. Total
uncertainty (AUNC') has a mean of -0.79% per month with a standard deviation of 2.23% per
month. The monthly Sharpe ratio of AUNC'is -0.35. Macro uncertainty (AUNC™) has a similar
Sharpe ratio of -0.39 as well as a mean of -0.82% per month and a standard deviation of 2.13%
per month. The monthly correlation between the mimicking portfolios of AUNC and AUNC™®
is 0.90. However, micro uncertainty (AUNC™) has a very small Sharpe ratio of -0.03. This is
mainly driven by its high standard deviation of 5.52% per month and a small mean of -0.18% per
month.

Using the mimicking uncertainty portfolios, we examine if the total uncertainty factor is mainly
driven by the macro uncertainty factor. Panel B of Table [4] reports time-series regression results.
The regression results are similar to those reported in Panel B of Table First, the coefficient
of AUNC™® is 0.94 (t-statistic=32.45) in the univariate regression. AUNC™“ explains 81% of
AUNC variations. Column (2) shows that adding AUNC™ contributes little to AUNC' (R? only
increases by 0.05). Again, we see that macro uncertainty (AUNC™?) captures most information

of total uncertainty (AUNC) while the contribution of micro uncertainty (AUNC™) is negligible.
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Next, we investigate whether uncertainty is a risk factor by asking if other factor models explain
the mimicking uncertainty factor. Panels C through E of Table ] report the alphas from the time-
series regression of the mimicking total uncertainty (AUNC), macro uncertainty (AUNC™?),
and micro uncertainty (AUNC™), against various pricing factors, using the full samplem We
consider eight factor models, including the CAPM, FF3, FF4, FF5, FF6, HXZ, HMXZ, and SY.
Panel C shows that except HXMZ, the alphas of total uncertainty from all models are similar
and significantly negative, ranging from -0.86% to -0.51%. The alpha from the HMXZ model is
smaller but remains significant, -0.13% per month (¢-statistic=-3.41). We find similar results for
macro uncertainty in Panel D. That is, except HXMZ, the alphas from all models are similar and
significantly negative, ranging from -0.91% to -0.48%. The alpha from the HMXZ model is smaller
but marginally significant, -0.03% per month (¢-statistic=-1.94). Panel E shows that alphas of
AUNC™ are mostly insignificant across different factor models.

Overall, Table |4 demonstrates that macro uncertainty is the main driver of total uncertainty,
which is not fully captured by the existing pricing factors, while the pricing of micro uncertainty is
negligible. Therefore, we will mainly use our macro uncertainty factor (AUNC™) in the remaining

analyses.

4.3.  Fama-MacBeth regressions

Our previous results show that macro uncertainty is a significant risk factor that is not explained
by many prevailing factor models while micro uncertainty is captured by many models. Next,
we explore the cross-sectional pricing power of AUNC™ by running Fama-MacBeth two-pass
regressions.

Panel A of Table [5] reports the price of risk for each factor across different factor models, using

'"The expanding-window results are similar.
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the full-sample estimation. First, we see that vy ycma is negatively priced with coefficient estimates
ranging from -0.82% to -0.80% across the different augmented factor models. Second, we see that
adding the macro uncertainty factor to the prevailing factor models improves model performance.
All of the augmented models have insignificant pricing errors. For example, the pricing error (7o)
decreases from 0.33% (t-statistic=6.33) of FF3 to 0.00% (t¢-statistic=0.11) of FF3+AUNC™®. The
pricing error (7o) decreases from 0.11% (t-statistic=2.81) of HXZ to 0.04% (t-statistic=1.34) of
HXZ+AUNC™®, Their adjusted R?s also increase after adding AUNC™¢ to the models. For
example, the R? increases from 0.19 of FF3 to 0.91 of FF3+AUNC™?. The R? increases from 0.51
of HXZ to 0.89 of HXZ+AUNC™®. Bootstrap simulations further confirm that adding AU NC™*®
to the factor models improves their explanatory power. This suggests that AUNC™® plays an
important role in explaining the cross-sectional return variation across the test portfolios.

To avoid a look-ahead bias, we use the expanding-window estimation and report results in Panel
B. Again, we see that UNC™? is negatively priced. In particular, we see that the pricing error
becomes insignificant after adding the macro uncertainty factor to the FF3, FF4, FF5, FF6, HXZ,
and SY models.

For comparison, we replace the macro uncertainty factor (AU NC™®) with the micro uncertainty
factor (AUNC™") and report the results in Panels C and D. Clearly, AUNC™ does not contribute
to the return variation of the test portfolios. First, yyyom: is insignificant across all augmented
factor models in Panels C and D. This is consistent with Panel E of Table [, which reports the
insignificant mimicking micro uncertainty factor. Second, comparing the prevailing factor models
and the AUNC™-augmented models, we see that 7o does not change much and is still significant.
Third, the adjusted R? also shows little improvement after adding AUNC™ in Panels C and D.

For completeness, we also consider three variations of uncertainty augmented factors models.

First, we directly use the total uncertainty (AUNC) to augment the prevailing models. We find

25



qualitative similar results, i.e., AUNC is negatively priced and the augmented models explain
various test assets. Second, we consider adding macro and micro uncertainty factors (AUNC™®
and AUNC™) simultaneously to the prevailing models. We find that AUNC™ is negatively
priced while AUNC™ is not priced. Last, we consider using the aggregate uncertainty factor
derived from aggregate TFP data (UNC?9) or the VIX. We construct the mimicking aggregate
uncertainty factor in a way similar to the mimicking macro uncertainty factor.

We find that the aggregate uncertainty factor is negatively priced, but its performance is weaker
than the macro uncertainty factor derived from the cross-section of TFPs estimated from firm-level
data. See Appendix [C] for more details. Overall, we conclude that adding the uncertainty factor
improves the explanatory power of prevailing factor models and its price of risk is significantly
positive in the cross section. More importantly, this is mainly driven by macro uncertainty, not

micro uncertainty.

4.4. Robustness checks: Examining noisy factors

The previous sections shows that the uncertainty factor, in particular the macro uncertainty
factor, explains various test assets. One might wonder whether our cross-sectional results are spu-
riously driven by noisy factors. Here we show that the uncertainty factors do not have explanatory
power by chance. Similar to |Adrian et al. (2014), we randomly draw the uncertainty factor with
replacement. Then, we construct mimicking uncertainty portfolios and rerun the Fama-MacBeth
two-pass regressions. Because we draw factors randomly, the noisy factors should not perform as
well as the original uncertainty augmented factor models. We repeat this simulation 100,000 times
and estimate how likely the noisy factors could perform relative to the original model in Table [6]

This table reports the probability that the noisy factors generate higher R?s (“R?” column),

prices of uncertainty risk (“PRC” column), and Sharpe ratios of the uncertainty factor (“SR”
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column) relative to the original models. We also report two different joint probabilities. The “Joint
R2-PRC” column is the probability that the noisy factors simultaneously generate higher R%s and
prices of risk compared to the original models. The “Joint All” column is the probability that the
noisy factors generate higher R?s, prices of uncertainty risk, and Sharpe ratios of the uncertainty
factor relative to the original models.

In Panel A, we test the noisy total uncertainty (AUNC) augmented factor models. All noisy
models perform poorly. Taking the noisy total uncertainty augmented FF6 model as an example,
the probability of the noisy factors performing as well as the original model is only 4.65%, 0.00%,
and 0.00% in terms of the R?, the intercept, and the price of risk, respectively. Moreover, their
joint probabilities are all zero. That is, it is almost impossible for the noisy factors to achieve the
same explanatory power as the original models. In Panel B, we use the macro uncertainty factor
(AUNC™®) and see very similar results. Turning to the micro uncertainty (AUNC™) in Panel
C, we see the probabilities increase sharply. This suggests that the noisy factors might perform
similarly to the original model for micro uncertainty. This is not surprising since we find that
the micro uncertainty factor is not priced. Lastly, we perform similar tests with the non-tradable
uncertainty factors directly and find similar resultsfr_g] Overall, these results suggest that the asset

pricing power of macro uncertainty is not due to chance.

5. Interpreting the expected investment growth factor

Tables [1] and 4| show that total uncertainty (macro uncertainty) is highly correlated with the
expected investment growth factor (EG) from Hou et al.| (2021). We now explore why the EG
factor might capture uncertainty risk. This helps us better understand the success of the EG factor

and the ¢°-model.

8These results are available by request.
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We first discuss the economic linkage between the EG factor and uncertainty risk. Then, we
relate the cross-sectional dispersion of EG predictors to the uncertainty factor. Lastly, we compare

the pricing power of the EG factor and the uncertainty factor.

5.1.  The expected investment growth factor

Motivated by Eq. , Hou et al.| (2015)) introduce the g-factor model which includes the market
portfolio (MKT), the size factor (Qng), the investment factor (Qr4), and the profitability factor
(Qror). Hou et al.| (2021) further separate the numerator of into the dividend yield, [X;+1 +
(a/2)(Livs1/Kirs1)?])/[1+a(liy/Kit)], and the capital gain, (1—8)[1+a(Lir1/Kit1)]/[1+a(Li/Ki)],
and suggest that the second part captures expected investment growth (EG). They propose the ¢°
model by adding the EG factor to their g-factor model and demonstrate its empirical success by
explaining many test portfolios and other pricing factors.

We replicate the EG factor by following|Hou et al.| (2021)). To predict expected future investment
growth, Hou et al. (2021)) run Fama-MacBeth regressions, using weighted least squares with market

capitalization, as follows:

I;
d <Kt> = Bo + B log Qit—1 + Beor CoPir—1 + Baror AROE;; 1 + €it, (16)

where d ( [Ig:t> is the first difference of the investment-to-assets of firm 7 at time ¢, () is Tobin’s g,
CoP is the operating cashflow, dROFE is the first difference between current ROFE and the four-
quarter-lagged ROE. They estimate the regression coefficients using a 120-month rolling window

and estimate the predicted future investment growth as follows:

EidLiv1/Kit11]) = Bo + B 1ogQit + Boop CoPi + Baror AROEy. (17)
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After estimating Eq. , they sort stocks on size and FEi[dI;+1/Kit+1] into 2-by-3 portfo-
lios. They then construct the expected investment growth factor (EG) as the difference between
the average returns of two high FE}[dlj;+1/Kjt+1] portfolios and the average returns of two low
Ei[dI;1 41/ Kii+1] portfolios, following |[Fama and French (1993). During our sample period, the EG
factor has a mean of 0.81% per month, a standard deviation of 2.02%, and an annual Sharpe ratio
of 0.40. Also, untabulated results show that the prevailing factor models cannot explain the EG
factor.

Why is the EG factor highly correlated with the uncertainty factor? First, we see from Eq.
that uncertainty contributes to expected investment growth. In fact, after controlling for other
pricing factors, the EG factor mainly captures uncertainty risk. Second, the empirical measure of
expected investment growth captures the cross-sectional dispersion of productivity. When predict-
ing the future investment growth in Eq. , the coefficients of the Fama-MacBeth regressions
depend on the cross-sectional variation of each predictor and these cross-sectional variations embed
productivity dispersion. For example, productivity dispersion clearly affects the cross-sectional
variations of Tobin’s ¢, operating cash flows, and ROE. Therefore, the EG factor constructed from
running Fama-MacBeth regressions can capture productivity dispersionE That is, we expect that
productivity dispersion is significantly correlated with the cross-sectional dispersions of the three

predictors in Eq. . We now empirically verify these two reasons.

5.2. Macro uncertainty and expected investment growth

Is the pricing power of EG driven by macro uncertainty risk, as suggested by Eq. ? We
directly decompose EG into predicted and residual components by regressing EG on macro un-

certainty. Following |Hou et al.| (2021), we match the non-tradable AUNC™® factor to firm-level

'9Bachmann and Bayer| (2014) show that shocks to productivity dispersion can generate procyclical cross-sectional
investment rate dispersion. This implies that expected investment growth can be driven by productivity dispersion
shocks.
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EG with at least a four-month reporting gap. We regress EG on AUNC™“ for each firm, using
the full sampleﬂ We sort all stocks into decile portfolios based on either their predicted EG or
residual EG. Value-weighted portfolio 10 (1) has the highest (lowest) predicted or residual EG.
Table [7] computes alphas for the host of cross-sectional asset pricing model previously considered.
Raw returns are also reported

Panel A presents results for the 10 portfolios sorted by predicted EG. Similar to/Hou et al.|(2021)),
the portfolio raw returns monotonically increase with predicted EG. The long-short portfolio (i.e.,
Portfolio 10 - Portfolio 1) has an average return of 0.89% (t-statistic = 3.59) per month. Its alpha
is also significantly positive from all benchmark models. For example, the long-short portfolio has
an alpha of 0.91% (¢-statistic=4.79) and 0.86% (t-statistic = 4.07) for the FF6 and HXZ models,
respectively. That is, we see that stocks with higher predicted EG have higher expected returns
and the predicted EG is not captured by existing risk factors. However, Panel B shows that the
residual EG does not generate significant alphas across all asset pricing models. Even though the
long-short portfolio return is 0.77% per month (¢-statistic=3.63), the alphas for the FF6, HXZ, and
SY models are insignificant. That is, residual EG does not provide additional information beyond
existing asset pricing factors. Therefore, we see that the pricing power of EG is driven by macro

uncertainty risk.

5.3.  Macro uncertainty and the predictors of expected investment growth

Next, we explore which predictors of the expected investment growth capture uncertainty risk.
In each year, we calculate the cross-sectional standard deviation of each predictor in Eq. . Then,
we run time-series regressions of the cross-sectional dispersions of thee predictors against macro

uncertainty (UNC™) in Panel A of Table|8. First, U NC™? explains the cross-sectional dispersions

20To avoid look-ahead bias, we also use an expanding-window to decompose EG into predicted and residual com-
ponents and find similar results. See Table [D1)) in Appendix @
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of three EG predictors very well. For example, UNC™® explains the cross-sectional dispersion of
operating cash flows (DIScop) with a coefficient of coefficient of 0.28 (¢-statistic=3.21) and an
R? of 0.42. This suggests that UNC™ alone explains the cross-sectional variation of operating
cash flows well. Also, UNC™® explains the cross-sectional dispersions of Tobin’s Q (DISg) and
changes in ROE (DISyror). The R? for DISg and DIS roE are 0.25 and 0.38, respectivelyﬂ In
Panel B, we run similar regressions using micro uncertainty (UNC™). The regression results show
that UNC™ explains little of the cross-sectional dispersions of the EG predictors, as UNC™ is
insignificant in all regressions and the highest R? is 0.11 only.

Turning to the asset pricing tests, we explore whether the loadings of the EG factor and the
uncertainty factors are correlated in Table[9] We estimate the loadings of a set of test assets on the
EG factor, the cross-sectional dispersions of its three predictors, the total uncertainty factor, the
macro uncertainty factor, and the micro uncertainty factors. The test assets include 45 portfolios
(used in Table |3)) and the tested pricing factors. First, we see that loadings on EG are highly
correlated with those of the total uncertainty factor and the macro uncertainty factor, but not
the micro uncertainty factor, as shown in Columns (1) and (2). Examining loadings on the three
predictors of EG, we see that operating cash flows (COP) are highly correlated with the total
uncertainty factor and macro uncertainty factor, but Tobin’s ¢ and changes in ROE (DIS; roE)
have a small correlation with the uncertainty factors. This is consistent with the finding of [Hou
et al.| (2021), i.e., operating cash flows are the strongest predictor of future investment growth@
Therefore, the evidence from the factor loadings further strengthens the connection between the
EG and uncertainty factors.

Taken together, Tables [§ and [9] suggest that macro uncertainty explains the EG factor via the

cross-sectional dispersions of its predictors, especially the operating cash flow component. Also,

21'We find similar results for total uncertainty. See Appendix [E| for more details.
22Appendix further compares the pricing power of these three EG predictors. That is, we augment the |[Hou et al.
(2015) g-factor model with each predictor of EG. We find that COP is the strongest predictor.
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micro uncertainty cannot capture the same fundamental risks of the EG factor because it does not

correlate with the cross-sectional dispersions of the EG predictors.

5.4. Comparing the EG factor and the uncertainty factor: Time-series and cross-sectional

Tegressions

Table [L0]reports time-series regressions to test whether the EG factor and the uncertainty factor
share the same fundamental risks. In Panel A, we present time-series regression coefficients of the
EG factor on the factor models augmented with the macro uncertainty factor (AUNC™®). Uncon-
ditionally, the EG factor has an average return of 0.81% per month (¢-statistic=8.77). However,
the FF3, FF4, FF5, FF6, HXZ, and SY augmented with macro uncertainty can fully explain the
EG factor with very small alphas. The loading of AUNC™ is significant and close to -1. When
we replace AUNC™® with AUNC™ in Panel B of Table we see that the EG factor has a
significant intercept in all regressions. Therefore, it seems that the EG factor captures a large
amount of macro uncertainty risk, which contributes to its pricing power@

We further compare the pricing power of the EG factor and the uncertainty factor by compar-
ing the [Hou et al. (2021) ¢° model (HMXZ) with the macro uncertainty-augmented HXZ model
(HXZ+AUNC™) and the micro uncertainty-augmented HXZ model (HXZ+AUNC™). Panels A
and C of Table [5| report the prices of risk and the pricing errors of the Fama-MacBeth regressions,
using the full-sample estimation. First, the pricing error () from HMXZ is 0.07% (t-statistic=2.10)
while that of HXZ+AUNC™® is 0.04% (t-statistic=1.34) in Panel A. Again, AUNC™ does not
play a role in the regressions as AUNC™ is insignificant throughout in Panel C. Second, vrg

is 0.79% (t-statistic=7.70) in the HMXZ model while yyncma is -0.81% (t-statistic=-7.89) in the

23 Appendix |G| reports results using total uncertainty (AUNC) to explain the EG factor for the full-sample and
expanding-window estimations. Given AUNC contains both macro and micro uncertainty risk, we find blended
results. Under the full-sample estimation, alphas are significantly smaller than under the micro uncertainty case,
but still statistically significant except for the SY model. Under the expanding-window estimation, the alphas are
generally small and no longer significant except for the CAPM.
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HXZ+AUNC™® model. That is, EG and AUNC™* have a similar price of risk. In Panels B and D
of Table [5], we estimate the price of risk using the expanding-window estimation. The main results
are qualitatively similar to those in Panels A and C. The vy from HMXZ is 0.06% (t-statistic=0.96)
while that from HXZ4+AUNC™* is 0.09% (t-statistic=1.50). Also, ygg and yyncma are 0.61% (t-
statistic=3.32) and -0.68% (t-statistic=-3.75), while yyncomi is -1.47% (t—statistic:—().?l)@ Over-
all, we see that the [Hou et al. (2015) g-factor model augmented with the macro uncertainty factor

performs similarly to the [Hou et al.|(2021) ¢°-factor model (HMXZ).

5.5, Comparing various models: Maximum squared Sharpe ratio

Table [5| uses a set of test assets as the left-hand-side variables to examine the pricing power of
different models. This approach is widely used (see, e.g., Fama and Frenchl {1996, 2015| |2016, 2017}
Hou et al| 2015, |2019, 2021)). However, this approach is often sensitive to the choice of test assets.
Alternatively, following Barillas and Shanken| (2017) and Fama and French! (2018)), we use the right-
hand-side approach to compare various models. To minimize the max squared Sharpe ratio of the
intercepts for all left-hand-side portfolios, we can rank competing models on the maximum squared
Sharpe ratio for model factors (Barillas and Shanken, 2017)).

To test a factor model i with factors f;, consider time-series regressions of the test assets (II;),
which include non-factor test assets and factors from other competing models, on model i’s factors
fi- Suppose the vector of intercepts from the time-series regressions is a; and the residual covariance

matrix is ;. The maximum squared Sharpe ratio of the intercepts is

SK(a;) = a7 ai, (18)

24 As a robustness check, we replace macro uncertainty (AUNC™®) with total uncertainty (AUNC) in Appendix
|E| and find similar results.
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where Sh?(-) denotes the maximum squared Sharpe ratio. (Gibbons et al. (1989) further shows
that the maximum squared Sharpe ratio of the intercepts is the difference between the maximum
squared Sharpe ratio constructed by II; and model i’s factors and that constructed by model i’s
factors only:

Sh*(a;) = Sh2(IL;, fi) — SK2(f). (19)

As II; and f; together include all competing factors, Sh?(Il;, f;) is independent of i. Hence, to
minimize the maximum squared Sharpe ratio of the intercepts, we only need to find the maximum
squared Sharpe ratio for model factors f;, i.e., Sh?(f;). The maximum squared Sharpe ratio can
be computed from the tangent portfolio formed by model factors.

Table presents the maximum squared Sharpe ratios for various factor models. Limited by
data availability, we compare the FF3, FF4, FF5, FF6, HXZ, HMXZ, and macro uncertainty,
micro uncertainty, or total uncertainty augmented models@ First, we see that adding macro
uncertainty consistently improves the maximum squared Sharpe ratio across all models, suggesting
the importance of macro uncertainty risk. But adding micro uncertainty only significantly improves
the FF6 and the HXZ models, while adding total uncertainty only significantly improves the FF3
model. Second, we see that HXMZ has the highest maximum squared Sharpe ratio (0.30) while
FF6+AUNC™® and HXZ4+AUNC™“ have similar maximum squared Sharpe ratio (0.26 and 0.27,
respectively). Again, this suggest that the EG factor and the macro uncertainty factor are very
similar.

We close this section by concluding that the expected investment growth factor captures macro
uncertainty risk. This contributes to the pricing power of the expected investment growth factor

and the success of the ¢°-model.

25We cannot compute Sh?(f) for the SY model as we only have the data for the spread factors, not the corresponding
portfolios.

34



6. Conclusions

Both macro and micro uncertainty affect real economic activities. To match business cycle
statistics, the macroeconomic literature often assumes a prominent role for micro uncertainty,
without acknowledging how micro uncertainty might be proxying for macro uncertainty. In this
paper, we use firm-level productivity estimates to decompose total uncertainty into macro and
micro uncertainty. We find that macro uncertainty is strongly countercyclical and priced among a
cross section of stocks, but micro uncertainty is almost acyclical and not priced. During recessions,
both macro uncertainty and the price of macro uncertainty risk increase. Overall, our results from
financial markets cast doubt on the importance of micro uncertainty on the business cycle.

Macro uncertainty appears to be a missing factor in prevailing factor models. Moreover, we
find that macro uncertainty risk drives the pricing power of the expected investment growth factor
proposed in [Hou et al| (2021), because uncertainty affects both expected returns and expected
investment growth. Empirically, both uncertainty and EG predictors, in particular operating cash
flows, capture cross-sectional productivity dispersion. This suggests an alternative way to under-

stand the success of the EG factor and the ¢°-model.
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Fig. 1. Uncertainty and industrial production growth

This figure plots the time series of total uncertainty (UNC'), macro uncertainty (UNC™?), and
micro uncertainty (UNC™) against the annual log industrial production (IP) growth in the United
States. Series are computed from Christiano and Fitzgerald (2003) band-pass filter and standard-
ized. The shaded areas are NBER recession periods.
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Fig. 2. Uncertainty and stock return dispersions

These figures plot the time series of total uncertainty (UNC'), macro uncertainty (UNC™*), and
micro uncertainty (UNC™) against cross-sectional return dispersions, including total stock return
dispersion (RD), the systematic stock return dispersion (RD*®¥*) and the idiosyncratic return dis-
persion (RD™°) computed from the Carhart four-factor model. All series are standardized. The
shaded areas are NBER recession periods.
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Fig. 3. Price of uncertainty risk and industrial production growth
This figure plots the prices of total uncertainty risk (UNC') and macro uncertainty risk (UNC™®)

against the annual log industrial production (IP) growth in the United States. All series are
standardized. The shaded areas are NBER recession periods.
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Table 2. Decomposing total uncertainty into macro and micro uncertainty

Panel A presents the time-series regression of aggregate uncertainty on macro uncertainty (UNC™®) and micro
uncertainty (UNC™). Aggregate uncertainty (UNC?99) is the conditional standard deviation of a generalized
autoregressive conditional heteroskedasticity GARCH(1,1) on aggregate TFP, obtained from the Federal Reserve
Bank of San Francisco. Panel B presents the time-series regression of total uncertainty (AU NC') on macro uncertainty
(UNC™) and micro uncertainty (UNC™?). Newey-West adjusted t-statistics with 5-year lags are in parentheses.
The testing period is from 1972 to 2016.

Panel A: Regression of aggregate uncertainty against macro and micro uncertainty

(1) (2)
UNC®9  UNC*9?

UNC™ 0.25 0.24
(2.23) (2.21)

UNC™ -0.17
(-1.25)

R? 0.10 0.11

Panel B: Regression of total uncertainty against macro and micro uncertainty

(1) (2)
AUNC  AUNC

AUNC™ 0.60 0.73
(10.11) (9.62)

AUNC™ 0.53
(3.11)

R? 0.75 0.81
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Table 4. Mimicking uncertainty factor returns and their alphas

Panel A presents the monthly mean (% per month), standard deviation (% per month, SD), monthly Sharpe ratio
(SR), and correlations for the mimicking uncertainty portfolios. Panel B reports the time-series regression of the mim-
icking total uncertainty portfolio on the mimicking macro uncertainty portfolio and the micro uncertainty portfolio.
Panels C - E reports alphas of the mimicking total uncertainty portfolio (AUNC'), the mimicking macro uncertainty
portfolio (AUNC™), and the mimicking micro uncertainty portfolio (AUNC™) from various factor models. Factor
models include the CAPM, |[Fama and French| (1993) three-factor model (FF3), |Carhart| (1997) four-factor model
(FF4), [Fama and French| (2015) five-factor model (FF5), |Fama and French| (2018)) six-factor model (FF6), Hou et al.
(2015)) g-factor model (HXZ), [Hou et al|(2021) ¢° model (HMXZ), and |Stambaugh and Yuan| (2017) model (SY). In
Panels B-E, Newey-West adjusted t-statistics with 6-month lags are in parentheses. The testing period is from July
1973 to June 2018.

Panel A: Statistics of monthly mimicking uncertainty portfolios

Mean SD SR AUNC AUNC™* AUNC™
AUNC -0.79 223  -0.35
AUNC™® -0.82 2.13 -0.39 0.90
AUNC™ -0.18 5.52 -0.03 -0.03 -0.27
Panel B: Regression of mimicking uncertainty portfolios
0 ®)
AUNC AUNC
AUNC™" 0.94 1.01
(32.45)  (37.81)
AUNC™ 0.09
(9.46)
R? 0.81 0.86
Panel C: Abnormal return of total uncertainty factor (AUNC)
Raw CAPM FF3 FF4 FF5 Fr6 HXZ HMXZ SY
AUNC -0.79 -0.86  -0.81 -0.77 -0.63 -0.62 -0.63 -0.13  -0.51
t-stat -8.27 -8.84 -9.59 -8.68 -8.28 -7.82  -8.35 -3.41  -5.33
Panel D: Abnormal return of macro uncertainty factor (AUNC™?)
Raw CAPM FF3 FF4 FF5 Fr6 HXZ HMXZ SY
AUNC™ -0.82 -091  -0.90 -0.78 -0.68 -0.61  -0.57 -0.03 -0.48
t-stat -9.07 -10.02  -11.38 -9.94 -8.15 -7.97 -6.43 -1.94 -5.51
Panel E: Abnormal return of micro uncertainty factor (AUNC™")
Raw CAPM FF3 FF4 FF5 FF6 HXZ HMXZ SY
AUNC™ -0.18 0.14 0.18 -0.03 0.03 -0.12  -0.41 -0.23  0.04
t-stat -0.77 0.69 0.89 -0.13 0.12 -0.59  -1.97 -1.01  0.16
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Table 6. Robustness: Noisy factors

Panel A examines how likely “noisy” factors could generate the cross-sectional results in Table [5} Following |Adrian
et al.|(2014), we run 100,000 simulations where we draw randomly from the empirical distribution of an uncertainty
factor (AUNC, AUNC™*, or AUNC™*) with replacement. We construct the monthly mimicking uncertainty factor
and rerun Fama-MacBeth two-pass regressions. For each statistic, we report the probability that noisy factors do
as well as the original models (i.e., the probability that noisy factors generate R%s as large as the original models
(in “R®” column), prices of risk of an uncertainty factor as large as original models (in “PRC” column), or Sharpe
ratio of an uncertainty factor as large as original mimicking uncertainty factors (in “SR” column). We also report
the joint probabilities that noisy factors simultaneously generate higher R?s and larger price of risk than the original
models (in “Joint R*-PRC” column) and that noisy factors simultaneously generate higher R?, larger prices of
risk, and larger Sharpe ratio than the original models (in “Joint All” column). Panel A, B, and C report results
from total uncertainty (AUNC), macro uncertainty (AUNC™®), and micro uncertainty (AUNC™), respectively.
Test assets are 45 portfolios and the tested pricing factors, including 6 size and book-to-market sorted portfolios,
6 size and operating profitability sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum
sorted portfolios, 6 size and expected investment growth sorted portfolios, 10 operating accrual sorted portfolios,
and 5 Fama-French industry portfolios. Tested factor models are Fama and French| (1993) three-factor model (FF3),
Carhart| (1997) four-factor model (FF4), Fama and French| (2015) five-factor model (FF5), Fama and French| (2018)
six-factor model (FF6), Hou et al.| (2015) g-factor model (HMZ), and |Stambaugh and Yuan| (2017) model (SY). All
numbers are in percentages. The testing period is July 1973 to June 2018 except for [Stambaugh and Yuan| (2017)
models. The testing period of |Stambaugh and Yuan| (2017) model is July 1973 to June 2016.

Panel A: Noisy AU N C-augmented factor models
R?  PRC SR Joint R2-PRC Joint All

FF3+AUNC 5.26 0.00 0.00 0.00 0.00
FF4+AUNC 4.74 0.00 0.00 0.00 0.00
FF5+AUNC 5.45 0.00 0.00 0.00 0.00
FF6+AUNC 4.65 0.00 0.00 0.00 0.00

SY+AUNC 5.78 0.00 0.00 0.00 0.00
HXZ+AUNC 4.10 0.00 0.00 0.00 0.00

Panel B: Noisy AUNC™“-augmented factor models
R®>  PRC SR Joint R*-PRC  Joint All

FE3+AUNC™ 3.02 0.00 0.00 0.00 0.00
FF4+AUNC™ 3.97 0.00 0.00 0.00 0.00
FE5+AUNC™* 3.76 0.00 0.00 0.00 0.00
FF6+AUNC™ 4.62 0.00 0.00 0.00 0.00

SY+AUNC™ 6.15 0.00 0.00 0.00 0.00
HXZ+AUNC™* 4.46 0.00 0.00 0.00 0.00

Panel C: Noisy AUNC™"-augmented factor models
R  PRC SR Joint R*-PRC  Joint All

FF3+AUNC™ 5877 94.02 96.76 53.64 53.64
FF4+AUNC™ 4790 98.00 96.76 45.91 44.66
FF5+AUNC™ 5375 96.34 96.76 50.10 50.10
FF6+AUNC™ 4574 98.37 96.76 44.11 42.50

SY+AUNC™ 3295 97.99 96.24 30.95 29.19
HXZ+AUNC™ 4712 98.30 96.76 45.42 43.88
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Table 7. Returns to portfolios sorted by the predicted and residual expected investment
growth

All stocks are sorted into 10 portfolios, based on the predicted expected investment growth (Panel A) or residual
expected investment growth (Panel B). We decompose the expected investment growth (EG) into predicted and
residual components by regressing EG against macro uncertainty (AUNC™?) for each firm using the full sample. We
compute the value-weighted portfolio returns, and the alphas from the CAPM, |Fama and French| (1993) three-factor
model (FF3), |Carhart| (1997)) four-factor model (FF4), Fama and French| (2015) five-factor model (FF5), |[Fama and
French| (2018) six-factor model (FF6), [Hou et al.| (2015)) g-factor model (HMZ), and |Stambaugh and Yuan| (2017)
model (SY). Newey-West t-statistics with six-month lags are in parenthesis. 10-1 indicates the difference between
Portfolio 10 (high predicted or residual expected investment growth) and Portfolio 1 (low predicted or residual
expected investment growth). All returns are multiplied by 100. The testing period is from July 1973 to June 2018
except for [Stambaugh and Yuan| (2017) model. The testing period of [Stambaugh and Yuan| (2017) is July 1973 to
December 2016.

Panel A: Portfolios sorted by predicted EG
1 2 3 4 5 6 7 8 9 10 10-1
Raw -0.16 0.34 0.47 0.65 0.70 0.62 0.70 0.61 0.72 0.73 0.89
(-0.39)  (1.05)  (1.99) (2.91) (3.22) (2.92) (3.59) (3.23) (3.32) (291) (3.59)
CAPM -1.05 -0.47 -0.17 0.01 0.10 0.03 0.16 0.04 0.14 0.06 1.11
(-4.33)  (-3.21) (-1.92)  (0.14)  (1.05) (0.36)  (1.92)  (0.50) (1.51) (0.53) (4.91)
FF3 -0.94 -0.49 -0.13 -0.01 0.04 0.01 0.14 0.06 0.23 0.26 1.20
(-4.83) (-3.43) (-1.55) (-0.12) (0.41) (0.17) (1.82)  (0.80) (2.87) (2.37) (6.14)
FF4 -0.80 -0.44 -0.09 0.02 0.03 0.03 0.09 0.09 0.23 0.35 1.15
(-4.43) (-3.27) (-1.05)  (0.25)  (0.35)  (0.44) (1.14)  (L16) (2.97) (2.73) (6.02)
FF5 -0.44 -0.24 -0.08 -0.05 -0.13 -0.09 -0.06 -0.01 0.20 0.48 0.92
(-2.23)  (-1.98) (-0.79) (-0.61) (-1.45) (-1.23) (-0.77) (-0.18) (2.45) (3.79) (4.76)
FF6 -0.38 -0.22 -0.06 -0.02 -0.12 -0.07 -0.08 0.02 0.21 0.53 0.91
(-2.04) (-1.85) (-0.55) (-0.30) (-1.40) (-0.95) (-1.18)  (0.21) (2.56) (3.87) (4.79)
HXZ -0.31 -0.17 -0.05 -0.02 -0.13 -0.06 -0.05 0.00 0.25 0.55 0.86
(-1.34) (-1.18) (-0.48) (-0.21) (-1.30) (-0.76) (-0.59) (0.05) (2.45) (3.65) (4.07)
SY -0.39 -0.19 0.01 -0.03 -0.08 0.03 -0.03 0.01 0.13 0.40 0.79
(-1.68) (-1.57)  (0.11) (-0.40) (-0.95)  (0.33) (-0.34) (0.17) (1.66) (2.31) (3.38)

Panel B: Portfolios sorted by residual EG

1 2 3 4 5 6 7 8 9 10 10-1
Raw 0.28 0.18 0.45 0.53 0.65 0.71 0.79 0.79 0.97 1.06 0.77
(0.99) (0.68) (2.05) (2.49) (3.06) (3.57) (3.82) (3.83) (4.57) (4.44) (3.63)
CAPM -0.46 -0.52 -0.18 -0.07 0.05 0.18 0.21 0.21 0.39 0.42 0.88
(-3.05) (-4.48) (-2.50) (-1.01)  (0.70)  (2.24)  (2.60)  (2.61) (3.79) (2.95) (3.79)
FF3 -0.32 -0.44 -0.15 -0.06 0.06 0.15 0.20 0.19 0.43 0.43 0.75
(-2.42)  (-3.42) (-2.06) (-0.77)  (0.74)  (1.84)  (2.72)  (2.55) (4.25) (3.42) (3.68)
FF4 -0.16 -0.30 -0.08 -0.02 0.01 0.11 0.16 0.16 0.29 0.32 0.48
(-1.26) (-2.25) (-1.08) (-0.31)  (0.07) (1.36) (2.17)  (2.20) (2.98) (2.52) (2.43)
FF5 -0.08 -0.27 -0.16 -0.14 0.01 -0.03 0.04 0.06 0.28 0.35 0.43
(-0.57) (-2.28) (-2.07) (-1.89)  (0.08) (-0.40) (0.63)  (0.71) (2.14) (2.67) (1.96)
FF6 0.02 -0.17 -0.10 -0.11 -0.03 -0.04 0.03 0.05 0.19 0.28 0.25
(0.17) (-1.43) (-1.35) (-1.49) (-0.35) (-0.55)  (0.41)  (0.60) (1.66) (2.16) (1.22)
HXZ 0.07 -0.19 -0.10 -0.11 0.00 -0.03 0.04 0.06 0.26 0.33 0.26
(0.52) (-1.57) (-1.30) (-1.30) (-0.01) (-0.34)  (0.54)  (0.64) (1.62) (2.23) (1.14)
SY 0.08 -0.12 -0.05 -0.12 -0.08 -0.03 0.07 -0.02 0.01 0.11 0.03
(0.49) (-0.92) (-0.67) (-1.61) (-1.05) (-0.37)  (0.93) (-0.17) (0.13) (0.90) (0.15)
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Table 8. Using uncertainty to explain the cross-sectional dispersions of EG predictors

Panel A reports the coefficients, t-statistics (t-stat), and R? from the time-series regression of the cross-sectional
dispersion of each EG predictor against the macro uncertainty (UNC™%). Predictors are operating cash flows
(DIScop), Tobin’s q (DISq), and change in return on equity (DISqror). Panel B runs similar regressions, using
the micro uncertainty (UNC™*). Newey-West t-statistics with 5-year lags are used. The testing period is from 1972
to 2016.

Panel A: Using macro uncertainty

UNC™@ 0.28 0.85 0.44
t-stat 3.21 2.34 3.50
R? 0.42 0.25 0.38

Panel B: Using micro uncertainty
DIScop DISq DISiror

UNC™ 0.37 1.05 0.64
t-stat 1.62 1.29 1.52
R? 0.11 0.06 0.11

95



Table 9. Examining loadings of uncertainty factor and EG

This table presents the cross-sectional regression results of loadings of EG and its predictors against loadings of total
uncertainty (AUNC), macro uncertainty (AUNC™®), and micro uncertainty (AUNC™). Bgc is the factor loading
of expected investment growth factor. Bcop is the factor loading of operating cash flow factor. Bqg is the factor
loading of Tobin’s q factor. Bgror is the factor loading of the change in return on equity factor. We estimate all
factor loadings of uncertainty, EG, and EG predictors with [Hou et al.| (2015 g-factors. Test assets are 45 portfolios
and tested pricing factors, including 6 size and book-to-market sorted portfolios, 6 size and operating profitability
sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum sorted portfolios, 6 size and expected
investment growth sorted portfolios, 10 operating accruals sorted portfolios, and 5 Fama-French industry portfolios.

The testing period is from July 1973 to June 2018.

1) (2) (3) (4) (5) (6) ) (®)
Bec  Bec Ppiscop Bpiscor Bpisq Bpisg  BpiSiror  BDISiror
Bunc -0.91 -0.48 -0.33 -0.21
t-stat  -4.39 -3.20 -1.53 -0.67
Buncma -1.08 -0.70 -0.05 0.19
t-stat -3.60 -3.56 -0.15 0.40
By nemi -0.03 -0.05 -0.14 -0.07
t-stat -0.31 -0.73 -1.16 -0.44
R? 0.29 0.37 0.18 0.41 0.05 0.06 0.01 0.00
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Table 10. Explaining the EG factor with uncertainty-augmented factor models

Panel A presents the abnormal returns and the factor loadings of EG factor from various macro uncertainty
(AUNC™*)-augmented factor models, using the full sample. Panel B reports the abnormal returns and the fac-
tor loadings of EG factor from various micro uncertainty (AUNC™!)-augmented factor models. Factor models
include the market model (CAPM), [Fama and French| (1993) three-factor model (FF3), |Carhart| (1997) four-factor
model (FF4), [Fama and French| (2015) five-factor model (FF5), [Fama and French| (2018)) six-factor model (FF6),
Stambaugh and Yuan| (2017) model (SY), and Hou et al.| (2015) g-factor model (HXZ). All returns are multiplied
with 100. Newey-West adjusted ¢-statistics (t-stat) with 6-month lags are provided. R? denotes the explanatory
power of the corresponding factor model. The testing period is from July 1973 to June 2018.

Panel A: Factor models augmented by macro uncertainty

o
Raw  0.81
t-stat 8.77
a MKT AUNCme  R?
CAPM 0.15  -0.06 -0.85 0.88
t-stat  3.74  -6.31 -24.77
a MKT SMB HML AUNCra R?
FF3 0.01 -0.08 0.19 -0.06 -1.00 0.94
t-stat  0.31 -10.83 20.27 -6.46 -51.24
a MKT SMB HML UMD AUNCra R?
FF4 0.01 -0.07 0.18 -0.05 0.03 -0.97 0.94
t-stat  0.26 -11.24 18.94 -4.12 2.71 -47.55
a MKT SMB HML CMA RMW AUNCha R?
FF5 0.00 -0.09 0.22 0.01  -0.20 0.04 -1.04 0.96
t-stat  0.05 -13.89 17.5 0.79  -7.69 1.86 -54.05
a MKT SMB HML CMA RMW UMD AUNCnh. R?
FF6 0.00 -0.09 0.21 0.03  -0.20 0.04  0.03 -1.01  0.96
t-stat  -0.04 -14.33 20.20 220  -9.26 226  4.47 -62.10
o MKT MISPyg MGMT PERF AUNCha R?
HXZ -0.01 -0.09 0.22 -0.21 0.06 -1.05 0.98
t-stat  -0.52 -21.00 28.33 -15.85 5.77 -84.38
a MKT QmE Qra QroE AUN Cna R?
SY 0.00 -0.08 0.18 -0.06 0.05 -0.94 0.95
t-stat  -0.04  -8.93 16.16 -4.27 5.20 -54.10
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Panel A: Factor models augmented by micro uncertainty

a MKT AUNC™ R?

CAPM 0.76  -0.01 0.14 0.26
t-stat  9.35 -0.24 3.70

a MKT SMB HML AUNC™  R?

3FF 0.78 0.00 -0.13 0.03 0.13  0.30
t-stat  9.47 0.13 -3.73 0.59 3.92

a MKT SMB HML UMD AUNC™! R?

4FF  0.71  -0.02 -0.14 0.10 0.14 0.08 0.37
t-stat  8.93  -0.68 -5.06 2.00 4.11 2.95

a MKT SMB HML CMA RMW AUNC™! R?

5FF  0.68 -0.03 -0.07 -0.08 0.29 0.29 0.05 0.38
t-stat  7.33  -0.92 -1.86 -1.57 3.14 3.41 2.43

a  Mktrf SMB HML CMA RMW UMD AUNC™  R?

6FF 0.61 -0.06 -0.07 0.01 0.25 0.32  0.15 0.00 0.46
t-stat  7.43  -2.20 -2.44 -2.18 0.17 3.44  5.32 0.03

a MKT MISyr MGMT PERF AUNC™ R?

SY 0.44 0.03 -0.04 0.32 0.24 0.04 0.51
t-stat  5.08 1.12 -1.29 7.02 7.71 1.97

a MKT QumE Qra  Qros AUNC™  R?

HXZ 058 -0.15 -0.01 0.32 0.41 -0.06 0.43
t-stat  6.10  -4.10 -0.28 3.77 7.23 -2.19
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Online Appendices

A. A production economy with uncertainty shocks

Consider an all-equity representative firm, operating in discrete time with infinite horizon. The
firm generates output according to a constant returns to scale production function: Y; = X K.
Y; and X; are the firm’s output and total factor productivity at time ¢, respectively. K; is the
productive capital at the beginning of time ¢.

The logarithmic productivity, inX;, follows an AR(1) process, with a time-varying volatility:

InXir1 = peln X+ 77(0}2 - 0’2) + otz t+1, (1)

O't2+1 = (1 - Pa)02 + antQ +VEstt1, (2)

where 0 < p, < 1 and 0 < p, < 1, 02 is the long-run average volatility, v is a constant, and
€xt+1 and €541 are iid. N(0,1) exogenous shocks. Eq. assumes a stochastic volatility
process (see, e.g., |[Fernandez-Villaverde and Guerrén-Quintana, (2020))), which describes the macro
uncertainty shocks. Similar to |[Bansal and Yaron (2004), for analytical tractability, we assume
an AR(1) process for the uncertaintym Eq. also captures the interplay between productivity
and uncertainty shocks. Economic recessions often feature high uncertainty and low productivity
contemporaneously with productivity increases in the future. This suggests that n > 0 in Eq. .
This is similar to the leverage effect (e.g. Black, 1976} (Christie, [1982; Harvey and Shephard, 1996]).

Productive capital evolves as K11 = I} + (1 — §) Ky, with a quadratic capital adjustment cost
of § (%)2 K, where I; is investment at time ¢, 0 is the depreciation rate, and a is a constant. The

2
dividend is given by D; = Y; — I; — & (;%) K,.

260ne unappealing feature of this assumption is the negative realizations of volatility. But, this assumption can be
easily relaxed by assuming the logarithmic volatility satisfies an AR(1) process in a numerical model or adopting an
autoregressive gamma process for volatility as in |Gouriéroux and Jasiak| (2006]).
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For simplicity, we assume a representative household with a power utilityﬂ The household

consumes firm dividends to maximize her expected utility, as follows:

= Ci
max E 8 —— 3
{Ci}iZg tz:; L—n ¥
a (I \?
C, = Yt—It—2<Ktt> K, Vt=0,1,2... (4)

where 7y is her relative risk aversion level and C; is her consumption at time ¢

The first-order condition gives

HQII(Z —Et{ﬁ (0;1)7 [Xt+1+ g <II;:1>2+(1—5) [1%(}?“ )H} (5)

t+1

The above equation says that the marginal costs of adding one additional unit of productive capital

equals its marginal benefits. This defines the marginal q at time ¢ as follows:

T
Q= 1+aé. (6)

The real investment return, RtI PR

2

I I

L X (#) v -0 [1ra(s)]

Rt+1 = T1; . (7)
1+ az

Cochrane (1991)) and Restoy and Rockinger| (1994) show that the stock return equals the real

investment return when production is constant returns to scale. Therefore, Eq. also computes

the stock return R4 ;.

2TUsing recursive preferences might make uncertainty shocks more important for asset prices.
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We can rewrite Eq. as the standard asset pricing equation:
E¢[Miy1Rep1] = 1, (8)

-
with the pricing kernel My = 8 (Cé—tl) .
For tractability, we consider a log-linearized version of the economy. Let V; denote logarithmic

deviations of variable V' from its steady state. Given the three state variables (i.e., productivity

Xt, productive capital K;, and uncertainty o?), optimal investment can be approximated as:
Iy = Ip + I Xy + It K¢ + 07, (9)

where Iy, I, I}, and I, are coefficients to be determined.

Log-linearizing Eq. gives the expected return:

ad
1+ad

EfRei1] = |h(Iy—1)6+h— ]h+hku—pa#

h ad ~
—po+h(Iy —1) 01, + hlp, — ——1I,| X
T lasPe b Iy = 1) 0lo + hlopr — 7= ] ¢

prductivity shock

- 5 .

capital stock

ad h
o — | Lo — + hi, Z, 1
+{[hp 1+a6] +<a(5+h )n}at (10)

uncertainty shock

where h = %%(52‘1%. That is, uncertainty shocks affect stock returns.
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Log-linearizing the resource constraint Eq. gives

A I N I N
Cy = [g - <C + ga52> Ix] X + [g (1 + 352) — <C + ga52) Ik] Ky

I I
— <C + ga52> I,o? + <C + ga52> Iy, (11)

where g = 0(10_72152). C and I are the steady state values, satisfying

1 )
- = - 12
C 1—-802-96 (12)
_ 1
Therefore, g = I > 0.
Log-linearizing the first-order condition Eq. gives
~ ~ N 1 A .
- (Etct+1 - Ct> + Eth+1 + §Vart |:—’}/Ct+1 + Rt+1 =0. (13)

This takes into account the impacts of uncertainty on quantities and asset prices (see, e.g., 7 and
7).
Substituting Eq. and into and matching coefficients, we can solve for Iy, I, I,

and I,. I can be solved from the following quadratic equation:

0 = —y [g (1 + %52) - (é + ga(52) Ik] (I, — 1)
+h(lx = 1)(1 =6+ 0L) = 5 iéaé(lk —1). (14)

In fact, we can see that I, = 1 is the solution due to the constant returns to scale technology

assumption.
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The other coefficients are:

vg(pe — 1) — 1=

Ix - ad ad (]‘5)

[ [

é ga52) Pz — 1) - ’76 + hpx ~ 1+ad
Q
6

(
;- af vlg— (& +9a82) L]} + {=v[g— (£ + gad®) L] + (& + hl)}
’ 76+ (& +906%) (1= po) + 125 — hpo

7 2

[h + 7 < + ga52>} 20+
C

h

2

1
2
I ) h I )
Io(1—po) + C+ga5 Is(1—po) — 76+hlx n+v\|g— 5+ga5 L\npo
Iy = (17)

h —

1+a6 + 70

Since 0 < h < %, we see that I, > 0. That is, investment increase with productivity shocks.
Ifn > li"ﬁ then we see that I, < 0. That is, investment decreases with uncertainty due to risk
aversion.

The optimal investment rate is

I
L—It Kt—IO+IXt+IJt (18)
K
Expected investment growth is
It;l ft 2
E, Ko K =I,(1 = po)o” + (pr — 1) L Xy + [(po — 1) Iy + L] o7 (19)
t+1 t

Since I, > 0,7 > 0, I, < 0 and 0 < p, < 1, expected investment growth decreases in the

productivity shock X, but increases in the uncertainty shock o?.

28Gince productivity variance is usually an order of magnitude smaller than its level, a large 7 is necessary to
generate the sizeable impacts of uncertainty on productivity level in Eq. . As n is large, this condition is easily
satisfied.
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The stock return can be simplified to

R ad h
E = (h- I hl,(1—py) — | — + hl, 2
t[Rey1] < 1—|—a5) 0+[ (1-ps) (a5+ )7]]0
h ad . ad h
—pr +hlp, — ——I,| X hpe — —— | I, — + hl, 2(20
+Lap+ P~ T3 s ] t+{[p 1—|—a5] +<a(5+ )”}Uf( )
prductivity shock uncertainty shock

Since 0 < h < %, 0<pr <1, 1, <0, I, >0, and n > 0, the expected stock return increases in

the uncertainty shock.

Taking Eq. , , and together, we see that the investment rate and expected in-
vestment growth capture productivity shocks and uncertainty shocks and therefore they capture
expected stock returns. Also, we see that when uncertainty increases, the current investment rate
decreases while both the expected investment growth rate and the expected stock return increase.
This suggests that expected investment growth is positively related to stock returns, as suggested

in the ¢>-model (Hou et al., [2021)).

B. TFP estimation

(1) Data

We use two main datasets to estimate the total factor productivity (TFP): Annual Compustat
and CRSP files, by matching Compustat and CRSP. The sample period is from 1966 to 2016.
Compustat items used include total assets (AT), net property, plant, and equipment (PPENT), sales
(SALE), operating income before depreciation (OIBDP), depreciation (DP), capital expenditure
(CAPX), inventory (INVT), sale of property, plant, and equipment (SPPE), depreciation, depletion
and amortization (DPACT), employees (EMP), and staff expense (XLR).

We apply several filters to select the sample firms. We include common stocks listed at

NYSE/Amex/Nasdaq. We exclude the financial firms and the utility firms (four-digit SIC be-
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tween 6000 - 6999 or 4900 - 4999). Also, firms with sales or total assets less than $1 millions,
or with negative or missing book equity, employees, capital expenditure, and depreciation are ex-
cluded. Firms with negative value-added or material costs are excluded as well. Stock price of each
firm must be greater than $5 at the end of a year. The labor expense ratio, which we will describe
below, should be between 0 and 1. Following |Chen and Chen| (2012)), we exclude firms with asset or
sales growth rate exceeding 100% to avoid potential business discontinuities that might be caused
by mergers and acquisitions. Finally, the sample firms should report their accounting information
more than 2 years to avoid the survivorship bias.

To calculate real values, we use GDP deflator (NIPA table 1.1.9 gtr linel) and price index for
nonresidential private fixed investment(NIPA table 5.3.4 gtr line2). We obtain employees’ earnings
data from Bureau of Labor Statistics (CES0500000030). This table reports weekly earnings for
each month. We use these to compute the annual earnings.

(2) Input variables

We calculate value-added, employment, physical capital, and investment to estimate TFP.

Value-added (Yj) is S“lg%giﬁ‘;fl‘;ﬁils“. Material cost (Materials;;) is total expenses minus
labor expense. Total expense is sales (SALE) minus operating income before depreciation and
amortization (OIBDP). Labor expense is the staff expense (XLR). However, only a small number

of firms report the staff expense. We replace the missing observations with the interaction of

industry average labor expense ratio and total expense. To be specific, we calculate the labor

xlr

s Sales., —obdpi? for each firm. Next, in each year we estimate the industry average of
2 T

expense ratio
the labor expense ratio at 4-digit SIC code level if there are at least 3 firms. Otherwise, we estimate
the industry average of the labor expense ratio at 3-digit SIC code level. In the same manner, we

estimate the industry average of labor expense ratio at 2-digit and 1-digit SIC code level. Then,

we back out the staff expense by multiplying the industry average labor expense ratio and total
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expense. If the labor expense is still missing, we interpolate those missing observations with the

interaction of annual wage from the Bureau of Labor Statistics and the number of employees.
Capital stock (K;;) is net property, plant, and equipment divided by the capital price deflator.

We calculate the capital price deflator, following imrohoroélu and T1izel (2014). First, we compute

the age of capital in each year. Age of capital stock is %

. We further take a 3-year moving
average to smooth the capital age. Then, we match the current capital stock with the price index
for private fixed investment at current year minus capital age. Finally, we take one-year lag for the
capital stock to measure the available capital stock at the beginning of the period.

Investment ([;;) is capital expenditure (CAPX) minus sale of property, plant, and equipment
(SPPE) plus a change of inventory (INVT), INVT;; — INVT;;_1, deflated by current fixed invest-
ment price index. We replace missing observations of SPPE with 0.

Labor (L) is the number of employees.

(3) TEFP estimation

We follow |Olley and Pakes (1996) to estimate the total factor productivity (TFP). |Olley and
Pakes (1996]) provide a robust way to measure production function parameters, solving the simul-
taneity problem and selection bias. |Olley and Pakes (1996) estimate the labor coefficient and the
capital coefficient separately to avoid the simultaneity problem. Also, they include the exit prob-
ability in TFP estimation process to avoid the selection bias. Imrohoroglu and Tiizel (2014) show
how to estimate |Olley and Pakes| (1996)) TFP using annual Compustat and share their codes@ We
follow Imrohoroglu and Tiizel (2014) with some modifications.

We start from the simple Cobb-Douglas production technology,

Yit = ZithtLKﬁK, (21)

29 Available at http://www-bcf.usc.edu/ tuzel/TFPUpload/Programs/
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where Y, Zi, Ly, and K, are value-added, productivity, labor, and capital stock of a firm ¢ at
time t. We scale the production function by its capital stock for several reasons. First, since TFP is
the residual term, it is often highly correlated with the firm size. Second, this avoids estimating the
capital coefficient directly. Third, there is an upward bias in labor coefficient without scaling. After

being scaled by the capital stock and transformed into logarithmic values, Eq. is rewritten as

Y Li
Log Ki - ﬁLLogK-i + (B + B — 1) LogKit + LogZy. (22)

We define Log}?:t, Logfg’ii, LogK;;, and LogZ; as ykit, lki, kit, and z;. Also, denote (81 and

(Brx + Br — 1) as B; and Bi. Rewrite Eq. as

yki = Bilkie + Brkit + zit- (23)

Olley and Pakes (1996) assume a monotonic relationship between the investment and productiv-
ity (i.e., investment captures information of productivity). Hence, productivity is a function of

2nd

investment, i.e., z;; = h(ik;;). We assume that the function h(ik;) is 2"*-order polynomials of ik;;.

Specifically, we estimate the following cross-sectional regression at the first stage:

it = Bilkis + Brkir + Bo + Biriki + Biiks + year x n; + e, (24)

where h(ikit) = Bo + Birikit + Bir2ik?. We include the interaction between year and industry (n;)
fixed effect to capture the differences of industrial technologies over time. 7; is Fama-French 10
industry classification. From this stage, we estimate the labor coefficients, ﬁAl

Second, the conditional expectation of y/k; 11 — BAll /kit+1 — year x n; on information at ¢ and
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survival of the firm is

~

E(ykir1 — Bilkigr1 — year xn;) = Brkiti1 + Ey(zi 12, survival)

- /Bkki,t-i—l + g(zita Psurvival,t)v

where ﬁsumivau is the probability of a firm survival from t to t+1. The probability is estimated
with the Probit regression of a survival indicator variable on the 2"¢ polynomials in investment
rate, i/k. zy is Bo + Bikiki + 5ik2ik’i2t- The function g is the polynomials of the survival probability
(ﬁsurm‘ual,t) and lagged TFP (z;). At this step, we estimate the coefficient of capital, B;, which

gives B;\(

From the second stage, total factor productivity (TFP) can be computed as follows:

TF Py = exp(ykis — Bllki,t — (Br + B — 1)kiy — year x ;). (26)

TFP;—TFP;;_1

After transforming the exponential values, we estimate TFP growth, TP, . We use a

5-year rolling window to estimate TFP. TFP estimates are available from 1972 to 2016.

C. Cross-sectional regressions of factor models augmented with uncertainty factors

In this section, we consider three variations of uncertainty augmented factor models. That is,
prevailing factor models augmented by the total uncertainty factor, macro and micro uncertainty

factors, and the aggregate uncertainty factor.

C.1. Cross-sectional regressions of factor models augmented with total uncertainty factor

Since AUNC™® tracks AUNC, we can replace AUNC™® with AUNC and run the Fama-
MacBeth regressions. Panel A of Table reports the results with the full-sample estimation,

which are qualitatively similar to those reported in Table fl ¢ from the augmented FF6 and
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SY models are insignificant. Also, yync are significantly negative across all models and their
magnitudes are close to the average factor return. To avoid the look-ahead bias, we report Fama-
MacBeth regressions using the extending-window estimation in Panel B of Table The testing
period is from July 1997 to June 2018. We find similar results in the extending-window cases. First,
vunNc is significantly negative across all augmented factor models. Second, the intercepts become

smaller or insignificant after we add AUNC to the prevailing factor models.

C.2. Cross-sectional regressions of factor models augmented with macro and micro uncertainty

factor

For another robustness check, we extend the prevailing factor models by adding both AUN(C™¢
and AUNC™, and report results in Table We see that across the augmented factor models,
only yyncmae are significantly negative while vy, yom: are insignificant. The augmented FF3, FF4,
FF5, FF6, HXZ, and SY models have insignificant pricing errors in the full-sample estimation
reported in Panel A. Panel B shows the extending-window estimation results, which are similar to

those in Panel A.

C.3. Cross-sectional regressions of factor models augmented with aggregate uncertainty factors

Table reports Fama-MacBeth regressions of various factor models augmented with the
mimicking aggregate uncertainty portfolio (UNC®9), using full sample. Aggregate uncertainty
(UNC®99) is the conditional standard deviation of a GARCH (1,1) on aggregate TFP. Table
shows that the mimicking aggregate uncertainty portfolio is negatively priced, but the augmented
models have significant intercepts. Overall, we see that the macro uncertainty factor (UNC™®)
performs better than the mimicking aggregate uncertainty factor (UNC%99).

Table [C4] reports Fama-MacBeth regressions of various factor models augmented with the mim-
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icking VIX portfolio (AVIX), using full sample. Again, we see that the mimicking VIX portfolio is
negatively priced. The augmented FF6 model has an insignificant intercept but other augmented
models have significant pricing errors. Overall, we see that the macro uncertainty factor (UNC™®)

performs better than the mimicking VIX factor.

D. Ezplaining the expected investment growth factor with total uncertainty-augmented fac-

tor models

To avoid the look-ahead bias, we use the extending-window to decompose EG into predicted
and residual components. Starting from 1985, we regress the firm-level EG against the macro
uncertainty to compute these two components over time. We sort all stocks into decile portfolios
based on either their predicted EG or residual EG. Portfolio 10 (1) has the highest (lowest) predicted
or residual EG. We compute the value-weighted portfolio returns and the alphas from various asset
pricing models. Panel A of Table shows that portfolio returns increase with predicted EG.
The long-short portfolio has a significantly positive alpha from all benchmark models. But Panel
B of Table shows that the residual EG doesn’t provide additional information. For example,
the long-short portfolio has much smaller alphas than those reported in Panel A and its alpha
is insignificant from SY model. Overall, we see that the pricing of EG is driven by the macro

uncertainty risk.

E.  FExplaining the cross-sectional dispersions of EG predictors with total uncertainty

Table 1| presents the univariate regression of the cross-sectional dispersion of each EG predictor
against the total uncertainty (UNC'). EG predictors are operating cash flows (COP), Tobin’s ¢
(Q), and change in return on equity (dROE). We see that UNC' explains most of the cross-sectional

dispersions of EG predictors.
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F.  Explaining the pricing powers of three EG predictors

Table compares the pricing powers of three EG predictors. We augment Hou et al. (2015
g-factor model with each predictor of EG and run Fama-MacBeth regressions. We see that oper-
ating cash flows (COP) and dROE are significantly positive, but Tobin’s ¢ is insignificant. Also,
HXZ+COP has the highest R2. This is consistent with [Hou et al.| (2021) that future investment

growth is predicted mainly by COP.

G. FExplaining the expected investment growth factor with total uncertainty-augmented fac-

tor models

Table reports the regression coefficients of using AUNC to explain the EG factor. The full-
sample estimation results in Panel A show that AUNC captures the EG factor in augmented SY
model, with insignificant intercepts of 0.02% (t-statistic=0.32). AUNC' are significantly negative
in all models.

To avoid the look-ahead bias, we presents similar regression results, using the extending-window

estimation, in Panel B. The results are similar to those reported in Panel A.

H. Comparing the ¢° model with total uncertainty-augmented q-model

For the robustness check, we compare [Hou et al| (2021) ¢ model (HMXZ) with AUNC-
augmented HXZ model (HXZ+AUNC) in Table The results are similar to those using
AUNC™® in Table |5l Overall, the EG factor and AUNC have similar contribution in explaining

the test portfolios in the cross section.
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Table D1. Returns to portfolios sorted by the predicted and residual expected invest-
ment growth: Extending-window estimation

All stocks are sorted into 10 portfolios, based on either the predicted expected investment growth (Panel A), or
residual expected investment growth (Panel B). We decompose EG into predicted and residual expected investment
growth by regressing EG against macro uncertainty (AUNC™*) for each firm using the extending-window estimation.
The decomposition starts in 1985 and extends to 2018. We compute the value-weighted portfolio returns, and the
alphas from CAPM, |[Fama and French| (1993 three-factor model (FF3), |Carhart| (1997)) four-factor model (FF4),
Fama and French| (2015) five-factor model (FF5), Fama and French| (2018) six-factor model (FF6), [Hou et al.| (2015)
g-factor model (HMZ), and |Stambaugh and Yuan| (2017) model (SY). Newey-West t-statistics with six-month lags
are in parenthesis. 10-1 indicates the difference between Portfolio 10 (high predicted or residual expected investment
growth) and Portfolio 1 (low predicted or residual expected investment growth). All returns are multiplied by 100.
The testing period is from July 1986 to June 2018 except for |Stambaugh and Yuan| (2017)) model. The testing period
of |Stambaugh and Yuan| (2017) is July 1986 to December 2016.

Panel A: Portfolios sorted by predicted EG
1 2 3 4 5 6 7 8 9 10 10-1
Raw 0.05 0.17 0.49 0.63 0.67 0.77 0.59 0.68 0.86 1.14 1.09
(0.10)  (0.51) (1.94) (2.49) (2.89) (3.70) (3.05)  (3.03) (3.24) (3.30) (4.03)
CAPM -1.03 -0.67 -0.19 -0.09 0.05 0.21 0.03 0.09 0.16 0.30 1.34
(-3.44) (-4.57) (-1.71) (-0.97)  (0.53)  (1.90) (0.32)  (1.06) (1.30) (1.74) (5.27)
FF3 -0.79 -0.60 -0.15 -0.03 0.02 0.18 0.00 0.10 0.24 0.47 1.26
(-3.56) (-4.07) (-1.37) (-0.41) (0.21)  (1.69) (0.00) (1.15) (2.24) (3.43) (5.58)
FF4 -0.65 -0.47 -0.11 -0.01 0.00 0.14 0.00 0.13 0.29 0.54 1.20
(-3.07) (-3.05) (-0.98) (-0.11) (-0.02)  (1.31) (0.03) (1.51) (2.59) (3.88) (5.29)
FF5 -0.26 -0.43 -0.10 -0.01 -0.22 -0.05 -0.18 -0.05 0.30 0.73 0.99
(-1.15) (-3.19) (-0.82) (-0.08) (-2.67) (-0.59) (-2.05) (-0.59) (2.78) (4.92) (4.29)
FF6 -0.20 -0.36 -0.08 0.01 -0.22 -0.07 -0.17 -0.01 0.33 0.76 0.96
(-0.93) (-2.58) (-0.63)  (0.08) (-2.54) (-0.71) (-1.97) (-0.08) (3.05) (5.08) (4.24)
HXZ -0.21 -0.39 -0.10 0.03 -0.18 -0.03 -0.13 0.02 0.36 0.81 1.02
(-0.80) (-2.53) (-0.77)  (0.36) (-2.11) (-0.30) (-1.44) (0.25) (2.85) (5.05) (4.12)
SY -0.22 -0.22 0.02 0.08 -0.12 -0.01 -0.16 -0.03 0.23 0.77 0.99
(-0.85) (-1.44)  (0.16)  (0.72) (-1.23) (-0.10) (-1.79) (-0.29) (1.59) (4.51) (3.83)

Panel B: Portfolios sorted by residual EG

1 2 3 4 5 6 7 8 9 10 10-1
Raw 0.47 0.59 0.58 0.63 0.63 0.68 0.75 0.74 0.89 1.18 0.71
(1.38)  (1.94) (2.21) (2.31) (2.91) (2.90) (3.32) (3.32) (4.46) (4.80) (2.91)
CAPM -0.39 -0.17 -0.09 -0.06 -0.01 0.04 0.15 0.16 0.32 0.53 0.91
(-2.34) (-1.56) (-0.92) (-0.51) (-0.08)  (0.47)  (1.47) (1.28) (3.33) (3.36) (3.58)
FF3 -0.28 -0.10 -0.09 -0.09 0.00 0.07 0.13 0.14 0.35 0.58 0.86
(-1.97) (-0.98) (-0.93) (-0.79) (-0.03)  (0.82)  (1.47) (1.21) (3.88) (4.01) (3.79)
FF4 -0.18 -0.03 -0.04 -0.08 0.03 0.05 0.10 0.13 0.28 0.49 0.67
(-1.36) (-0.22) (-0.41) (-0.70)  (0.31)  (0.63) (1.07) (1.17) (3.07) (3.52) (3.19)
FF5 -0.06 -0.01 -0.15 -0.15 -0.07 -0.02 -0.03 -0.08 0.18 0.45 0.51
(-0.39) (-0.12) (-1.45) (-1.26) (-0.81) (-0.20) (-0.39) (-0.81) (1.76) (3.10) (2.12)
FF6 -0.01 0.04 -0.11 -0.13 -0.04 -0.02 -0.04 -0.07 0.14 0.39 0.40
(-0.07)  (0.31) (-1.06) (-1.16) (-0.46) (-0.28) (-0.50) (-0.68) (1.46) (2.93) (1.88)
HXZ 0.01 0.06 -0.08 -0.13 -0.04 0.02 -0.02 -0.02 0.22 0.52 0.51
(0.06) (0.58) (-0.69) (-1.07) (-0.44) (0.22) (-0.20) (-0.16) (1.90) (2.97) (1.98)
SY 0.05 0.10 -0.04 -0.12 -0.01 -0.04 -0.03 -0.11 0.03 0.21 0.15
(0.32)  (0.84) (-0.33) (-0.95) (-0.12) (-0.49) (-0.30) (-0.95) (0.30) (1.68) (0.72)
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Table E1. Using total uncertainty to explain the cross-sectional dispersions of EG
predictors

Columns (1)-(3) report the coefficients, t-statistics (t-stat), and R? from the time-series regression of the cross-
sectional dispersion of each EG predictor on the total uncertainty (UNC'). Predictors are operating cash flows
(DIScop), Tobin’s q (DISg), and change in return on equity (DIS4ror), respectively. Newey-West ¢-statistics
with 5-year lags are used. The testing period is from 1972 to 2016.

1) (2) (3)

DISCOP DISQ DISdROE

UNC 0.36 1.09 0.62
t-stat 4.00 2.82 5.46
R? 0.61 0.36 0.65
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Table F1. Cross-sectional regressions of EG predictors-augmented factor models

This table reports Fama-MacBeth regressions of [Hou et al.| (2015) ¢-factor model (HMZ) augmented with pricing
factors of three predictors of the expected investment growth, using the full-sample estimation. We construct the
annual pricing factors by sorting each of three predictors, following Hou et al.| (2021). Three predictors are operating
cash flow (COP), Tobin’s Q (Q), and the first-difference of return on equity (dROFE). Test assets are 45 portfolios
and the tested tradable pricing factors, including 6 size and book-to-market sorted portfolios, 6 size and operating
profitability sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum sorted portfolios, 6 size
and expected investment growth sorted portfolios, 10 operating accrual sorted portfolios, and 5 Fama-French industry
portfolios. All coefficients are multiplied by 100. The ¢-statistics are adjusted for errors-in-variables, following|Shanken
(1992). The adjusted R? follows |Jagannathan and Wang (1996). The 5'* and 95" percentiles of the adjusted R?
distribution from a bootstrap simulation of 10,000 times are reported in brackets. The testing period is June 1973
to June 2018.

HXZ+COP HXZ+Q HXZ+dROFE

Coeff t-stat Coeff t-stat Coeff t-stat

Yo 0.96 2.17  -0.23 -0.45 0.98 1.76

YMKT 5.98 2.29 7.42 2.81 6.23 2.36

Yous 283 146 314 162 276 143

YQra 3.55 1.94 6.85 4.93 6.16 3.85

YQror 4.26 2.49 5.93 3.49 6.07 3.59
Ycopr 8.70 5.02

Y0 -1.92  -0.72
YdROE 9.12 5.24
R?  0.69 0.64 0.59

(5™, 95")  (0.42, 0.83) (0.32, 0.83) (0.30, 0.78)
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Table G1. Explaining EG factor with total uncertainty-augmented factor models

Panel A presents the average return and the factor loadings of EG factor from various total uncertainty (AUNC)-
augmented factor models, using the full sample. Panel B shows similar results from the expanding-window estimation.
Factor models include the market model (CAPM), [Fama and French| (1993)) three-factor model (FF3), |Carhart
(1997) four-factor model (FF4), Fama and French| (2015)) five-factor model (FF5), Fama and French| (2018) six-factor
model (FF6), [Stambaugh and Yuan| (2017) model (SY), and Hou et al| (2015)) g-factor model (HXZ). All returns
are multiplied by 100. Newey-West adjusted t-statistics (t-stat) with 6-month lags are provided. R? denotes the
explanatory power of the corresponding factor model. The testing period for Panel A is from July 1973 to June 2018.
The testing period for Panel B is from July 1997 to June 2018.

Panel A: Full-sample estimation

67
Raw 0.81
t-stat  8.77
a MKT AUNC  R?
CAPM 0.37 -0.10 -0.63 0.61
t-stat  5.31 -4.86 -9.64
a MKT SMB HML AUNC  R?
3FF  0.30 -0.12 0.12 -0.11 -0.76  0.65
t-stat  4.22  -6.71 3.59 -3.53 -10.11
a MKT SMB HML UMD AUNC  R?
4FF 0.21  -0.10 0.10 -0.05 0.14 -0.72  0.73
t-stat  3.85  -7.66 4.32 -1.89 6.19 -13.15
a MKT SMB HML CMA RMW AUNC  R?
5FF  0.22  -0.11 0.19 -0.08  -0.12 0.25 -0.77  0.72
t-stat  3.25  -6.14 5.55 -1.77 -1.61 3.8 -17.84
a MKT SMB HML CMA RMW UMD AUNC R?
6FF 0.15 -0.10 0.18 0.00 -0.17 022  0.13 -0.75  0.79
t-stat  2.90 -7.36 7.36 -0.11  -3.33 4.88 10.05  -23.97
a MKT QmE Qra  Qror AUNC  R?
HXZ 0.12 -6.05 12.79 2.60 19.95 -0.65 0.77
t-stat  2.25  -4.03 6.26 0.85  11.09 -17.21
o MKT MISyr MGMT PERF AUNC  R?
SY 0.02 -0.12 0.28 -0.30 0.35 -0.90 0.87
t-stat  0.32  -9.71 9.31 -7.29  14.20 -28.65
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Panel B: Expanding-window estimation

Raw
t-stat

CAPM
t-stat

3FF
t-stat

4FF
t-stat

5FF
t-stat

6FF
t-stat

HXZ
t-stat

SY
t-stat

o
0.61
3.85

o
0.15
2.53

o
0.11
1.91

o
0.11
1.88

o
0.10
1.74

o
0.10
1.72

o
0.11
1.86

o
0.06
1.14

MKT
-0.09
-4.76

MKT
-0.09
-4.75

MKT
-0.09
-4.56

MKT
-0.08
-4.44

Mktrf
-0.08
-4.25

MKT
-0.09
-4.17

MKT
-0.08
-4.02

SMB
0.08
2.43

SMB
0.07
2.40

SMB
0.10
5.16

SMB
0.10
5.08

MISuE
0.08
2.87

QmE
0.09
3.12

HML
0.00
-0.14
HML
0.00
0.02
HML
0.00
-0.03
HML
0.00
0.11
MGMT
-0.02
-0.76
Q1a
0.02
0.68

UMD
0.01
0.75

CMA

-0.06
-1.58
CMA
-0.06
-1.60
PERF
0.04
1.43
Qror
0.02
1.96

RMW
0.07
2.37

RMW
0.07
2.37

UMD
0.01
0.77

AUNC
-0.79
-25.67
AUNC
-0.82
-28.49
AUNC
-0.82
-29.79
AUNC
-0.81
-25.67
AUNC
-0.81
-27.69
AUNC
-0.81
-24.45
AUNC
-0.79
-24.78

0.89

R2
0.90

R2
0.90

R2
0.90

R2
0.90

R2
0.90

0.91
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Table H1. Comparing the ¢° model with total uncertainty-augmented ¢g-model

Panel A reports the coefficients (Coefl) and ¢-statistics (t-stat) from Fama-MacBeth regressions of Hou et al.| (2021)
q° model (HMXZ) and total uncertainty-augmented |Hou et al. (2015) g-model (HXZ+AUNC), using the full sample.
Test assets are 45 portfolios and the tested pricing factors, including 6 size and book-to-market sorted portfolios,
6 size and operating profitability sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum
sorted portfolios, 6 size and expected investment growth sorted portfolios, 10 operating accrual sorted portfolios,
and 5 Fama-French industry portfolios. Panel B shows similar regressions for the expanding-window estimation. All
coefficients are multiplied by 100. The ¢-statistics are adjusted for errors-in-variables, following Shanken| (1992)). The
adjusted R? follows |Jagannathan and Wang| (1996). The 5" and 95" percentiles of the adjusted R* distribution
from a bootstrap simulation of 10,000 times are reported in brackets. The testing period for Panel A is from July
1973 to June 2018. The testing period for Panel B is from July 1997 to June 2018.

Panel A: Full-sample betas
HMXZ HXZ+AUNC
Coeff t-stat Coeff  t-stat
Yo 0.07 2.10 0.07 1.92
YMKT 0.54 2.72 0.52 2.61
Youe 0.36 2.62 0.35 2.52
YQra 0.31 2.93 0.35 3.27
YQrow 0.33 2.40 0.39 2.82
YEG 0.79 7.70
YUNC -0.86 -7.85
R*  0.82 0.91
(5*", 95"m)  (0.66, 0.87) (0.80, 0.92)
Panel B: Expanding-window betas
HMXZ HXZ+AUNC
Coeff t-stat Coeff  t-stat
Yo 0.06 0.96 0.05 0.87
YMKT 0.55 1.92 0.56 1.97
YO r 0.32 1.46 0.33 1.54
Yo;4 019 1.01 0.2  1.03
YQrox 0.14 0.53 0.14 0.57
YEG 0.61 3.32
YUNC -0.64 -3.58
R*  0.74 0.83
(5", 95")  (0.60, 0.88) (0.72, 0.92)
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