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Abstract

Uncertainty affects business cycles and asset prices. We estimate firm-level productivity and

decompose total uncertainty risk measured as cross-sectional productivity dispersion into macro

uncertainty (an aggregate component) and micro uncertainty (an idiosyncratic component).

We find that macro uncertainty is strongly countercyclical and priced among stocks, but micro

uncertainty is acyclical and not priced. Moreover, we show that the expected investment growth

factor proposed in Hou, Mo, Xue, and Zhang (2021) captures macro uncertainty risk which helps

us understand the success of the q5-model.
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Uncertainty coincides with business cycles (Bloom, 2009; Fernández-Villaverde et al., 2015; Basu

and Bundick, 2017; Bloom et al., 2018; Diercks et al., 2023),1 and affects asset prices as well (Bansal

and Yaron, 2004; Segal et al., 2015; Bali et al., 2017, 2021; Bretscher et al., 2023). Uncertainty

includes both macroeconomic and microeconomic components. Previous studies such as Bloom

et al. (2018) use both components to match business cycle fluctuations theoretically by assuming

a significant role for micro uncertainty relative to macro uncertainty under the assumption that

both are driven by a common latent process. However, these two uncertainty measures seem to be

distinct as discussed in Kozeniauskas et al. (2018). Given their difference is understudied, this paper

aims to fill this gap by examining these two components from an asset pricing perspective. We first

estimate firm-level productivity and then decompose uncertainty risk measured as cross-sectional

productivity dispersion into macro uncertainty (an aggregate component) and micro uncertainty

(an idiosyncratic component). We find that macro uncertainty is strongly countercyclical and priced

among stocks, but micro uncertainty is acyclical and not priced. This challenges the importance of

micro uncertainty over business cycles.

To motivate our empirical work, we consider a simple production economy with time-varying

productivity volatilities to study the impact of uncertainty on consumption, investment, and asset

prices. An interplay between productivity shocks and uncertainty shocks, similar to the leverage

effect (e.g., Black, 1976; Christie, 1982; Harvey and Shephard, 1996), is crucial to our analysis.

That is, there are two different and yet related fundamental shocks in this economy, namely, a

productivity shock and an uncertainty shock. For example, in recessions, low productivity often

accompanies high economic uncertainty. The increasing risk caused by high uncertainty leads to

1The causality is unclear, as Bloom et al. (2018) discuss. Uncertainty might lead to business fluctuations. Alterna-
tively, uncertainty may arise endogenously from business cycles. Many papers find that the cross-sectional dispersions
of firm- or establishment-level variables, like productivity, output, prices, employment, and business forecasts, appear
to be countercyclical (Bloom, 2009; Bachmann and Bayer, 2013; Bachmann et al., 2013; Bachmann and Bayer, 2014;
Kehrig, 2015; Bloom et al., 2018; David et al., 2022).
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a higher expected stock return and a lower current investment rate,2 which in turn implies higher

expected investment growth in the future. Therefore, both the investment rate and expected

investment growth are needed to capture these two fundamental shocks. Also, we find that expected

stock returns positively covary with expected investment growth via an uncertainty channel. We

test this prediction with the expected investment growth (EG) factor proposed in the q5-model of

Hou et al. (2021). We find evidence that the pricing power of the EG factor is driven by macro

uncertainty risk. This provides an alternative way to understand the success of the EG factor and

the q5-model.

Empirically, we follow Bloom (2014) to measure uncertainty as time-varying volatilities (see,

e.g., Bloom, 2009; Jurado et al., 2015; Bloom et al., 2018). Uncertainty contains two components

— macro and micro uncertainty shocks. Macro uncertainty refers to the aggregate uncertainty

in the economy, which is often measured over an aggregate index such as aggregate productivity

or stock market volatility. Macro uncertainty is countercyclical (Bloom et al., 2018) and its asset

pricing power is well accepted as it changes investors’ future consumption growth and investment

opportunities (Bansal and Yaron, 2004; Segal et al., 2015; Bali et al., 2017, 2021).

In contrast, micro uncertainty captures uncertainty about idiosyncratic volatility. Although

idiosyncratic volatility might appear to be priced due to missing factors or a common volatility

factor as discussed in Chen and Petkova (2012) and Herskovic et al. (2016), it is unclear whether

micro uncertainty is priced. In particular, the empirical measure of micro uncertainty used often

clouds the results. For example, Bloom et al. (2018) uses the cross-sectional dispersion of micro-

level data (e.g., establishment- or firm-level productivity) to measure micro uncertainty and finds

micro uncertainty is countercyclical, suggesting a pricing role for micro uncertainty. However, such

a micro uncertainty measure is contaminated with macro uncertainty, since micro level productivity

2Note that investment could also decrease with uncertainty initially by adding fixed adjustment costs (see, e.g.,
Bloom et al. (2018)) or when capital utilization is flexible (Segal and Shaliastovich, 2022).
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contains both systematic and idiosyncratic productivity.3 This calls for a clean measurement of

micro uncertainty to help us understand whether micro uncertainty matters.

Guided by this observation, we use firm-level data to differentiate micro and macro economic

uncertainty in two steps. First, we estimate firm-level total factor productivity (TFP) following

Olley and Pakes (1996) and İmrohoroğlu and Tüzel (2014) at an annual frequency. Total uncertainty

is measured as the cross-sectional standard deviation of these TFP shocks. Second, we apply

an asymptotic principal component analysis as in Connor and Korajczyk (1987), Herskovic et al.

(2016), and Chen et al. (2018) to estimate the systematic and idiosyncratic TFP components across

all firms. We identify six principal components of productivity shocks.4 Macro (Micro) uncertainty

is measured as the cross-sectional standard deviation of systematic (idiosyncratic) productivity

shocks. Figure 1 demonstrates that macro uncertainty (total uncertainty) is countercyclical, with

a correlation coefficient of -0.26 (-0.10) with industrial production growth. Micro uncertainty is

almost acyclical (the correlation coefficient with the industrial production growth is 0.004). That is,

uncertainty is high during recessions and this is driven mainly by macro uncertainty. This suggests

that macro uncertainty and not micro uncertainty relates to business cycles.

Using the annual non-tradable uncertainty factor, we run Fama-MacBeth two-pass regressions

to test its pricing power by matching stock returns with lagged uncertainty risk. We augment five

cross-sectional asset pricing factor models with the total uncertainty factor, the macro uncertainty

factor, or the micro uncertainty factor. The factor models include the Fama and French (1993)

three-factor model (FF3), the Carhart (1997) four-factor model (FF4), the Fama and French (2015)

five-factor model (FF5), the Fama and French (2018) six-factor model (FF6), and the Hou et al.

(2015) q-factor model (HXZ). We find that total uncertainty risk is negatively priced, with a price

3Schaab (2020) illustrates that aggregate uncertainty can be transmitted to heterogeneous households via unem-
ployment risk and wage volatilities. Therefore, household-level uncertainty also contains macro uncertainty.

4Chen and Kim (2020) show that this decomposition reasonably captures aggregate and idiosyncratic productivity
shocks.

3



of -4.55% to -9.32% per year. Macro uncertainty is also negatively priced, with a price of -8.29% to

-13.93% per year. Augmenting these factor models with a macro uncertainty factor improves their

performances. For example, pricing errors are insignificant for the augmented FF5, FF6, and HXZ

models. In particular, the price of macro uncertainty risk increases during recessions, as shown in

Figure 3. However, micro uncertainty is not priced.

To allow for empirical tests at the monthly frequency, we construct mimicking factors for total

uncertainty, macro uncertainty, and micro uncertainty following Adrian et al. (2014) and Chen

and Yang (2019). The annual Sharpe ratios of the total uncertainty and macro uncertainty factors

are sizable, -0.35 and -0.39, respectively, but micro uncertainty has a Sharpe ratio of only -0.03.

Cross-sectional asset pricing tests further show that prevailing factor models, including the CAPM,

the Fama-French models (FF3, FF4, FF5, FF6), the Stambaugh and Yuan (2017) mispricing factor

model (SY), and the Hou et al. (2015) q-factor model (HXZ), can explain the micro uncertainty

factor, but not the macro uncertainty factor. Augmenting these factor models with a mimicking

macro uncertainty factor also improves their performance. For example, in the full-sample estima-

tion, pricing errors are insignificant for the augmented FF3, FF4, FF5, FF6 and HXZ models. We

further show that the pricing power is not spuriously driven by noisy factors.

We find an economic linkage between macro uncertainty and the expected investment growth

factor in Hou et al. (2021). First, we show that macro uncertainty contributes to the pricing power

of the expected investment growth factor. After controlling for macro uncertainty, the residual of

the expected investment growth factor is not priced. Second, we find that the predictors of expected

investment growth in Hou et al. (2021) capture cross-sectional productivity dispersion (e.g., macro

uncertainty), especially the operating cash flow component. Finally, we show that the HXZ model

augmented with the macro uncertainty factor can fully explain the expected investment growth

factor. This augmented model performs similarly to the Hou et al. (2021) q5-factor model. Overall,
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we provide evidence that the expected investment growth factor captures macro uncertainty risk.

Our paper belongs to a growing literature on economic uncertainty. Bloom (2009), Fernández-

Villaverde et al. (2015), Basu and Bundick (2017), Bloom et al. (2018), and Diercks et al. (2023)

study the impact of uncertainty on business cycles. Kozeniauskas et al. (2018) shows that vari-

ous macro uncertainty, micro uncertainty, and higher-order uncertainty measures are distinct and

some are statistically uncorrelated. Dew-Becker and Giglio (2022) shows that cross-sectional uncer-

tainty, measured using option data, does not forecast overall economic activity as well as aggregate

uncertainty.

Other works examine the asset pricing implications of aggregate uncertainty shocks. For exam-

ple, Bansal and Yaron (2004) considers the equity premium implied by the conditional volatility

of consumption growth. Bekaert et al. (2009) shows that economic uncertainty contributes to the

term structure and countercyclical volatility of asset returns. Hartzmark (2016) shows that higher

uncertainty leads to lower interest rates. Bali and Zhou (2016) shows that economic uncertainty,

proxied by the variance risk premium, is significantly priced. Dew-Becker et al. (2017), Berger

et al. (2019), and Dew-Becker et al. (2021) differentiate between uncertainty and realized vari-

ance using data from equity derivative markets. They show that realized variance has a negative

premium, while aggregate uncertainty carries a zero or a positive premium. Segal et al. (2015)

differentiate good and bad uncertainty arising from positive and negative industrial production

growth. Alfaro et al. (2023) considers real and financial frictions to amplify the impacts of uncer-

tainty shocks. Schaab (2020) considers the transmission and interaction of aggregate uncertainty

and household-level uncertainty. Bretscher et al. (2023) show that uncertainty shock affects risk

premium, especially when it is combined with countercyclical risk aversion. More closely related to

our work, Bali et al. (2017) and Bali et al. (2021) find that macroeconomic uncertainty is priced in

the cross section of stocks and corporate bonds using the Jurado et al. (2015) uncertainty index.
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Herskovic et al. (2023) considers uncertainties of aggregate consumption growth and firm-specific

productivity shocks, and shows that the former drives the size and the value premia while the lat-

ter contributes to the equity premium. Our paper contributes to this literature by differentiating

macro and micro uncertainty and shows that micro uncertainty does not matter for asset prices.

Our paper also follows in the tradition of the production-based asset pricing literature such as

Cochrane (1991), Cochrane (1996), Berk et al. (1999), Zhang (2005), and Liu et al. (2009). The

neoclassical theory of investment stresses that production risks drive stock risks. Hou et al. (2015)

and Hou et al. (2021) construct pricing factors based on firm investment, profitability, and expected

investment growth.5 Our paper adds to this literature by studying the role of uncertainty shocks.

Lastly, our paper also contributes to the large literature on the empirical performance of cross-

sectional asset pricing factor models. For example, Fama and French (2015) constructs a five-factor

model based on the dividend discount model/surplus clean accounting method, including a market

factor, a size factor, a value factor, an investment factor, and a profitability factor. Fama and French

(2018) further adds a momentum factor to their five-factor model. Hou et al. (2015) proposes a

q-factor model motivated by the q-theory of investment, including a market factor, a size factor, an

investment factor, and a profitability factor. Hou et al. (2021) further adds an expected investment

growth factor to their q-factor model to create their q5 model. Stambaugh and Yuan (2017) studies

a four-factor model, which includes a market factor, a size factor, and two mispricing factors.

Overall, these factor models perform well in explaining a host of anomalies. Our paper suggests

that the macro uncertainty factor is missing from most models with the notable exception of the

Hou et al. (2021) q5 model as we show that macro uncertainty risk contributes to the pricing power

of their expected investment growth factor in the q5 model.

The rest of the paper proceeds as follows. Section 1 presents a production-based model to ex-

5Li et al. (2021) considers the impact of investment lags and show that aggregate expected investment growth
negatively predicts future market returns due to firms’ investment plans.
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plore the linkage between uncertainty shocks, expected investment growth, and asset prices. Section

2 describes the data and the procedures used for estimating various uncertainty measures and their

estimates. Section 3 presents cross-sectional asset pricing tests, using non-tradable uncertainty

factors. Section 4 tests the pricing power of the uncertainty factors, using mimicking portfolios.

Section 5 explores the relationship between the macro uncertainty factor and the expected invest-

ment growth factor. Finally, Section 6 concludes.

1. Uncertainty shocks, expected investment growth, and asset

prices: A motivating model

We consider a simple production economy to illustrate the role of uncertainty shocks on expected

investment growth and asset prices.6 We assume an all-equity representative firm which operates in

discrete time with an infinite horizon. The firm generates output according to a constant returns to

scale production function: Yt = XtKt. Yt and Xt are the firm’s output and total factor productivity

at time t, respectively. Kt is the productive capital at the beginning of time t.

Logarithmic productivity, lnXt, follows a first-order autoregressive model (AR(1)), with time-

varying volatility σt:

lnXt+1 = ρx lnXt + η (σ2
t − σ2) + σt εx,t+1, (1)

σ2
t+1 = (1− ρσ)σ

2 + ρσ σ
2
t + υ εσ,t+1, (2)

where 0 < ρx < 1 and 0 < ρσ < 1 are the AR(1) coefficients, σ2 is the long-run average volatility,

υ is a constant, εx,t+1 and εσ,t+1 are i.i.d. N(0, 1) exogenous shocks. Eq. (2) assumes a stochastic

volatility process (see, e.g., Fernández-Villaverde and Guerrón-Quintana (2020)) which describes the

6For simplicity, this model is not designed to capture all empirical features. See Appendix A for a general
equilibrium model.
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macro uncertainty shock. Similar to Bansal and Yaron (2004), for analytic tractability, we assume

an AR(1) process for uncertainty.7 We also assume 0 < ρσ < 1, which is similar to the consecutive

uncertainty shocks considered by Diercks et al. (2023).8 One important feature of the model is that

uncertainty affects productivity growth, as captured by the second term in the right-hand side of

Eq. (1). This is similar to the leverage effect (e.g. Black, 1976; Christie, 1982; Harvey and Shephard,

1996). Economic recessions often feature high uncertainty and low productivity contemporaneously

with productivity increasing in the future. Therefore, high uncertainty is associated with low

productivity contemporaneously and but high productivity in the future, suggesting that η > 0 in

Eq. (1).

Productive capital evolves as Kt+1 = It + (1 − δ)Kt, with a quadratic capital adjustment cost

of a
2

(
It
Kt

)2
Kt, where It is investment at time t, δ is the depreciation rate, and a is a constant.9

The dividend is given by Dt = Yt − It − a
2

(
It
Kt

)2
Kt. For a given stochastic discount factor Mt+i,

the firm chooses the optimal investment to maximize the present value of future dividends:

max
It

Dt + Et

∞∑
i=1

[Mt+iDt+i]. (3)

From the firm’s first order conditions, the marginal cost at time t of adding an additional unit

of productive capital at time t+ 1 is 1 + a It
Kt

, which defines the marginal q at time t:

qt ≡ 1 + a
It
Kt

. (4)

The value of an additional unit of productive capital at time t + 1 is Xt+1 + a
2

(
It+1

Kt+1

)2
+ (1 −

7Admittedly, the realizations of volatility could be negative in this case. This assumption can be easily relaxed
by assuming the logarithmic volatility satisfies an AR(1) process in a numerical model or adopting an autoregressive
gamma process for volatility as in Gouriéroux and Jasiak (2006).

8Diercks et al. (2023) show that uncertainty shocks in consecutive periods are superadditive, i.e., amplifying
uncertainty effects.

9We do not consider time-to-build. Chen (2016) and Li et al. (2021) consider investment lags.
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δ)
[
1 + a

(
It+1

Kt+1

)]
, where the first term captures the marginal productivity, the second term captures

the capital adjustment costs that are saved, and the last term captures the continuation value of

productive capital. Therefore, the real investment return, RI
t+1, is

RI
t+1 =

Xt+1 +
a
2

(
It+1

Kt+1

)2
+ (1− δ)

[
1 + a

(
It+1

Kt+1

)]
1 + a It

Kt

. (5)

Cochrane (1991) and Restoy and Rockinger (1994) show that stock returns equal real investment

returns when production is constant returns to scale. Therefore, Eq. (5) also computes the stock

return Rt+1.

Using a log-linearized version of the economy, we solve for the investment rate, expected invest-

ment growth, and the expected stock return. Let V̂t denote logarithmic deviations of variable V

from its steady state. Given the three state variables (productivity X̂t, productive capital K̂t, and

uncertainty σ2
t ), optimal investment can be approximated as:

Ît = I0 + IxX̂t + IkK̂t + Iσσ
2
t , (6)

where I0, Ix, Ik, and Iσ are coefficients to be solved (in fact, Ik = 1 due to constant returns to scale

production). Therefore, the optimal investment rate is

Ît
Kt

= Ît − K̂t = I0 + IxX̂t + Iσσ
2
t . (7)

Appendix A shows that Ix > 0 and Iσ < 0 under very mild technical conditions. That is, investment

increases with productivity shocks but decreases with uncertainty shocks. Expected investment
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growth is

Et

[
ˆIt+1

Kt+1
− Ît

Kt

]
= Iσ(1− ρσ)σ

2 + (ρx − 1) IxX̂t + [(ρσ − 1) Iσ + Ixη]σ
2
t . (8)

As Ix > 0, 0 < ρx < 1, η > 0, Iσ < 0 and 0 < ρσ < 1, expected investment growth decreases with

productivity shocks but increases with uncertainty shocks.

Log-linearizing Eq. (5) gives the expected stock return:

Et[R̂t+1] =

(
h− aδ

1 + aδ

)
I0 +

[
hIσ(1− ρσ)−

(
h

aδ
+ hIx

)
η

]
σ2

+

[
h

aδ
ρx + hIxρx −

aδ

1 + aδ
Ix

]
X̂t︸ ︷︷ ︸

prductivity shock

+

{[
hρσ − aδ

1 + aδ

]
Iσ +

(
h

aδ
+ hIx

)
η

}
σ2
t︸ ︷︷ ︸

uncertainty shock

, (9)

where h = aδ
2−a

2
δ2+(a−1)δ

. Since 0 < h < aδ
1+aδ , 0 < ρσ < 1, Iσ < 0, Ix > 0 and η > 0, the expected

stock return increases with uncertainty shocks.

In this economy, two fundamental risks drive the investment rate, expected investment growth,

and the expected stock return, namely the productivity shock X̂t and the uncertainty shock σ2
t .

10

Taking Eq. (7), (8), and (9) together, we see that when there are productivity shocks only (i.e.,

no uncertainty shocks), either the investment rate or the expected investment growth rate alone

is a sufficient statistic for productivity shocks. That is, either the investment rate or the expected

investment growth rate is sufficient to fully capture expected stock returns. However, in the presence

of uncertainty shocks, both the investment rate and expected investment growth are necessary

and sufficient to fully capture these two shocks and hence expected stock returns. This suggests

using firm characteristics such as the investment rate and expected investment growth rate as

pricing factors. In other words, the pricing power of the investment factor and the expected

10Again, due to constant returns to scale production, the capital stock does not affect expected stock returns, i.e.,
no size effect. Empirically, the capital stock generally matters for asset prices providing a potential explanation of
the size factor.
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investment factor in the q5-model is due to their abilities to capture the fundamental risks, i.e.,

productivity shocks and uncertainty shocks. In a similar vein, other empirical factors (for example,

the profitability factor), might also incorporate these two risk sources and appear to be priced.

Examining the impact of the uncertainty shock, i.e., the coefficients of σ2
t in Eq. (7), (8), and (9),

we see that when uncertainty increases, the investment rate decreases while expected investment

growth and the expected stock return increase. That is, investment and the stock return are

negatively correlated while expected investment growth covaries positively with the expected stock

return. This provides additional support to the investment factor and expected investment growth

factor used in the q5-model of Hou et al. (2021), i.e., via the uncertainty channel.

2. Estimating uncertainty shocks

Following Bloom et al. (2018), we first estimate firm-level total factor productivity (TFP). The

cross-sectional dispersion of TFP shocks is then used as a total uncertainty measure. Next, we

decompose total uncertainty into macro and micro uncertainty.

2.1. Estimating firm-level TFP and the total uncertainty

We closely follow Olley and Pakes (1996) and İmrohoroğlu and Tüzel (2014) to estimate firm-

level TFP. Olley and Pakes (1996) address two endogeneity issues involving TFP estimation. First,

since input factors (labor and capital stock) are contemporaneously correlated, there is a simul-

taneity bias. They estimate the production function parameters for each input factor separately

to address this bias. Second, there is a selection bias, because firms exit or enter the markets

depending on their productivity. Olley and Pakes (1996) assume TFP is a function of a firm’s sur-

vival probability and include that in the TFP estimation. Olley and Pakes (1996) further assume

that (1) TFP is a first-order Markov process; (2) physical capital is predetermined after TFP is
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observed; and (3) investment reflects information about TFP. İmrohoroğlu and Tüzel (2014) apply

Olley and Pakes (1996) to estimate firm-level TFP. We follow their estimation procedures with

some modifications.

Assume a Cobb-Douglas production function:

Yit = ZitL
βL
it KβK

it , (10)

where Yit, Zit, Lit, and Kit are value-added, productivity, labor, and capital stock of a firm i at

time t. The productivity contains both systematic and idiosyncratic components. Next, we scale

the production function by its capital stock and take logarithms. We perform this scaling for three

reasons. First, since TFP is the residual term, it is highly correlated with firm size. Second, the

scaling avoids estimating the capital coefficient directly. Third, it mitigates an upward bias in the

labor coefficient. Eq. (10) can be rewritten as

Log
Yit
Kit

= βLLog
Lit

Kit
+ (βK + βL − 1)LogKit + LogZit. (11)

Denote Log Yit
Kit

, Log Lit
Kit

, LogKit, and LogZit as ykit, lkit, kit, and zit. Also, let βL and (βK+βL−1)

be βl and βk. Rewrite Eq. (11) as follows:

ykit = βllkit + βkkit + zit. (12)

We estimate the labor coefficient (βl) and capital coefficient (βk) using linear regressions. Then,

the logarithmic TFP, zit, is ykit − βllki,t − βkkit. We estimate TFP using a 5-year rolling window.

Similar to Bloom et al. (2018), we define the cross-sectional standard deviation of TFP at time

t as the cross-sectional TFP dispersion, i.e., total uncertainty (denoted as UNC). We take the
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first difference of this cross-sectional TFP dispersion as the total uncertainty shock (denoted as

∆UNC). Note that this firm-level TFP dispersion is often used as micro uncertainty in the litera-

ture. However, as we show below, this measure contains macro uncertainty also.

We use annual Compustat data to estimate TFP for common stocks from the NYSE, Amex,

and Nasdaq. To obtain stable estimates, following Bloom et al. (2018), we assume all firms follow

the same production function. This will introduce some noise in our estimates, since production

functions may vary across industries and over time. However, as we decompose total uncertainty

into micro and macro components, we expect the measurement errors to be small, especially for

macro uncertainty.

We include all firms except for financial and utility firms (four-digit SIC codes between 6000 -

6999 and between 4900 - 4999).11 We exclude firms with assets or sales below $1 million or year-end

stock price lower than $5. Following Chen and Chen (2012), we also exclude firms with asset or

sales growth rate exceeding 100% to avoid potential business discontinuities that might be caused

by mergers and acquisitions. The sample period is from 1966 to 2016. The TFP estimates are from

1972 to 2016. The estimated labor coefficient βl is 0.56 and the estimated capital coefficient βk

is 0.38. These estimates are similar to those reported in Olley and Pakes (1996), and are in line

with neoclassical models. For example, Bloom et al. (2018) assume that the labor coefficient is 2/3

and the capital coefficient is 1/3. During our sample period, the production technology is slightly

decreasing returns-to-scale (βl + βk = 0.94). See Appendix B for more details.

2.2. Estimating macro and micro uncertainty

Following Herskovic et al. (2016), we decompose firm-level TFP into systematic and idiosyn-

cratic components via the asymptotic principal component analysis of Connor and Korajczyk

11The results are qualitatively similar if we restrict our sample to manufacturing firms only.
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(1987). This allows us to separate systematic and idiosyncratic productivity. TFP estimates for N

firms over time T , denoted as TFPNT , can be decomposed into k principal components:

TFPNT = BNk × PCkT + ϵNT , (13)

where TFP is an N × T matrix of TFP, B is an N × k matrix of the sensitivities to aggregate

TFP shocks, PC is a k × T matrix of systematic TFP shocks, and ϵ is an N × T matrix of the

idiosyncratic TFP shock. Next, we calculate Ω = 1
N TFP TTFP and estimate the eigenvector of Ω.

We multiply each element of the eigenvectors with 1√
T

to obtain unit standard deviations.

To more precisely estimate the systematic TFP components (PC), we use firms with more than

10 years of data. We choose six principal components (k = 6), following Chen and Kim (2020) as

they find that (1) six principal components explain more than 50% of firm-level TFP; (2) there is a

positive contemporaneous correlation between stock returns and systematic TFP growth; and (3)

only the volatility of systematic productivity positively predicts expected stock returns while the

idiosyncratic volatility does not. These findings suggest that six principal components reasonably

approximate the systematic productivity shocks.

After we estimate systematic TFP growth and idiosyncratic TFP growth, we calculate the cross-

sectional standard deviations of systematic TFP growth and idiosyncratic TFP growth, which are

defined as macro uncertainty and micro uncertainty here. Then, we take their first differences to

compute macro and micro uncertainty shocks, denoted as ∆UNCma and ∆UNCmi, respectively.

Although idiosyncratic productivity is not priced, it is unclear if micro uncertainty is priced as

micro uncertainty may relate to priced additional state variables.
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2.3. Uncertainty estimates

Panel A of Table 1 shows that TFP growth (∆TFP ) has a mean of 0.01 and a standard deviation

of 0.21. TFP growth varies over both the cross section and the time series. The next three rows

present descriptive statistics for uncertainty shocks. Total uncertainty (∆UNC) has a mean of 0.00

with a standard deviation of 0.05. Macro uncertainty (∆UNCma) has a larger standard deviation

of 0.07, while micro uncertainty (∆UNCmi) only has a standard deviation of 0.03.

Figure 1 shows the time series of the uncertainty shocks and industrial production growth

(IP ), including total uncertainty, macro uncertainty, and micro uncertainty. We apply the band-

pass filter of Christiano and Fitzgerald (2003) to these series. Similar to findings in Bloom et al.

(2018), total uncertainty (UNC) is countercyclical, with a correlation coefficient of -0.10 with

IP growth.12 Therefore, uncertainty is high during recessions. Moreover, we see that macro un-

certainty (UNCma) is strongly countercyclical, with a correlation coefficient of -0.26, but micro

uncertainty (UNCmi) is barely correlated with IP growth, with a correlation coefficient of 0.004.

Total uncertainty being countercyclical is mainly due to macro uncertainty.

Figure 2 plots the cross-sectional standard deviation of stock returns with various uncertainty

measures. We decompose the stock return into systematic and idiosyncratic components by regress-

ing annual stock returns on the Carhart (1997) four-factor model factors. We use the predicted

stock return as the systematic component and the residuals as the idiosyncratic component. We

calculate the cross-sectional standard deviations of stock returns and the two components in each

year, denoted as RD, RDsys, and RDidio. Panels (a) and (b) of Figure 2 show that total uncer-

tainty and macro uncertainty track the cross-sectional return dispersions quite well. For example,

12Using the detailed Census microdata of manufacturing establishments from 1972 to 2011, Bloom et al. (2018)
find that TFP dispersion is negatively correlated with GDP growth with a correlation coefficient of -0.45. Our TFP
dispersion measure differs from Bloom et al. (2018) in three ways. First, their TFP is establishment-level while our
TFP is firm-level. Second, they only cover manufacturing establishments, while our sample includes all firms except
financials and utilities. Third, they estimate TFP following Foster et al. (2001).
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the correlation coefficients between UNC and RD, RDsys, and RDidio are 0.53, 0.56, and 0.59,

respectively. The correlation coefficients between UNCma and RD, RDsys, and RDidio are 0.56,

0.57, and 0.55, respectively. However, Panel (c) of Figure 2 shows that UNCmi is much less corre-

lated with RD and RDsys (the correlation coefficients are -0.04 and -0.12, respectively). Figure 2

shows that our uncertainty measures are reasonably estimated and comove with the stock return

dispersion measures.

Panel B of Table 1 summarizes the annual correlation coefficients between the uncertainty

measures and cross-sectional asset pricing factors. We consider eleven pricing factors, including:

(1) the six factors in Fama and French (2018) — the market portfolio (MKT), the size factor

(SMB), the value factor (HML), the investment factor (CMA), the profitability factor (RMW), and

the momentum factor (UMD); (2) the five factors from Hou et al. (2021) — the market portfolio

(MKT), the size factor (QME), the investment factor (QIA), the profitability factor (QROE), and

the expected investment growth factor (EG); and (3) the univariate mispricing factor (MIS) from

Stambaugh and Yuan (2017).

Consistent with the predictions in Section 1, Panel B shows that total uncertainty (∆UNC)

is positively related to the expected investment growth factor (EG) (a correlation coefficient of

0.29). We also see that macro uncertainty (∆UNCma) is highly correlated with ∆UNC, with

a correlation coefficient of 0.87. This suggests that total uncertainty is mainly driven by macro

uncertainty. Also, ∆UNCma has a pronounced correlation coefficient with EG, 0.25. Third, micro

uncertainty (∆UNCmi) has negative correlations with ∆UNC and ∆UNCma. Also, ∆UNCmi

does not have a strong correlation with EG. Overall, Panel B provides evidence that ∆UNCma

captures most of ∆UNC and both measures have a significant relationship with the EG factor.
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2.4. Inspecting the uncertainty decomposition

In this subsection, we validate our uncertainty decomposition in three steps. First, we check

if our macro uncertainty measure reasonably captures aggregate uncertainty. To this end, we

obtain aggregate TFP data from the Federal Reserve Bank of San Francisco and following Bloom

et al. (2018), we define aggregate uncertainty (UNCagg) as the conditional standard deviation

of a GARCH (1,1) on aggregate TFP. Panel A of Table 2 reports the time-series regressions of

aggregate uncertainty on macro uncertainty (UNCma) and micro uncertainty (UNCmi). Macro

uncertainty positively predicts the aggregate uncertainty while micro uncertainty does not. This is

also confirmed by the correlation between uncertainty shocks and VIX. Panel A of Table 1 shows

that total uncertainty and macro uncertainty positively correlate with VIX, with a correlation

coefficient of 0.38 and 0.37, respectively. But the correlation coefficient of micro uncertainty and

VIX is -0.18.

Second, using our TFP estimates, we investigate if total uncertainty is mainly driven by macro

uncertainty. Panel B of Table 2 reports the time-series regressions of ∆UNC against ∆UNCma

and ∆UNCmi. The univariate regression in Column (1) shows that ∆UNCma has a coefficient

of 0.60 (t-statistic=10.11) and the R2 is 0.75. This is not surprising given the high correlation

between ∆UNC and ∆UNCma reported in Panel B of Table 1. In Column (2), we add ∆UNCmi

to the regression. The coefficient of ∆UNCmi is 0.53 (t-statistic=3.11) while that of ∆UNCma is

0.73 (t-statistic=9.62). Also, the explanatory power (R2) increases by only 0.06 from Column (1)

to Column (2). Panel B of Table 2 suggests that ∆UNC is mainly driven by ∆UNCma.
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3. Pricing of uncertainty shocks: Using annual non-tradable un-

certainty factors

We run Fama-MacBeth two-stage regressions to examine the pricing power of uncertainty shocks

using annual non-tradable uncertainty factors, including total uncertainty, macro uncertainty, and

micro uncertainty. We use forty-five portfolios, including six size and book-to-market sorted portfo-

lios, six size and operating profitability sorted portfolios, six size and investment sorted portfolios,

six size and momentum sorted portfolios, six size and expected investment growth sorted portfo-

lios, ten operating accrual sorted portfolios, and five Fama-French industry portfolios.13 Following

Lewellen et al. (2010), we add the pricing factors of tested factor models to test assets in order to

restrict the price of risk to be equal to the average factor return. To ensure that uncertainty risk

is strictly observable, we match the uncertainty estimates and stock returns with a six month lag.

We augment the prevailing factor models with the total uncertainty factor, macro uncertainty

factor, or micro uncertainty factor, and compare those to the prevailing factor models. Seven

factor models are considered, including the Fama and French (1993) three-factor model (FF3), the

Carhart (1997) four-factor model (FF4), the Fama and French (2015) five-factor model (FF5), the

Fama and French (2018) six-factor model (FF6), the Stambaugh and Yuan (2017) mispricing factor

model (SY),14 the Hou et al. (2015) q-factor model (HXZ), and the Hou et al. (2021) q5 model

(HMXZ). We do not augment the Hou et al. (2021) q5 model (HMXZ) since EG and ∆UNCma are

highly correlated. We leave our discussion of the q5 model for Section 5. These macro uncertainty

13We download these portfolios from the following websites:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html; http://global-q.org/index.html

14For the Stambaugh and Yuan (2017) mispricing factor model, we only perform asset pricing tests on monthly
mimicking portfolios for the uncertainty factors in Section 4 as we do not have the constituent portfolios available to
construct annual data.
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augmented factor models are as follows:

FF3+∆UNCma: Rit = γ0 + γMKT β̂MKT,i + γSMBβ̂SMB,i + γHMLβ̂HML,i

+ γUNCma β̂UNCma,i + ϵit

FF4+∆UNCma: Rit = γ0 + γMKT β̂MKT,i + γSMBβ̂SMB,i + γHMLβ̂HML,i + γUMDβ̂UMD,i

+ γUNCma β̂UNCma,i + ϵit

FF5+∆UNCma: Rit = γ0 + γMKT β̂MKT,i + γSMBβ̂SMB,i + γHMLβ̂HML,i + γCMAβ̂CMA,i + γRMW β̂RMW,i

+ γUNCma β̂UNCma,i + ϵit

FF6+∆UNCma: Rit = γ0 + γMKT β̂MKT,i + γSMBβ̂SMB,i + γHMLβ̂HML,i + γCMAβ̂CMA,i + γRMW β̂RMW,i

+ γUMDβ̂UMD,i + γUNCma β̂UNCma,i + ϵit

HXZ+∆UNCma: Rit = γ0 + γMKT β̂MKT,i + γQME
β̂QME ,i + γQIA

β̂QIA,i + γQROE
β̂QROE ,i

+ γUNCma β̂UNCma,i + ϵit

SY+∆UNCma: Rit = γ0 + γMKT β̂MKT,i + γMISME
β̂MISME ,i + γMGMT β̂MGMT,i + γPERF β̂PERF,i

+ γUNCma β̂UNCma,i + ϵit

In the first stage, we run the time-series regression of each model to estimate the factor loadings

for each asset using the full sample. In the second stage, we run the cross-sectional regression of

all test assets on the factor loadings each year and then compute the time-series average of the

prices of risk. We adjust the t-statistics following Shanken (1992). We report the adjusted R2

from Jagannathan and Wang (1996). Following Lewellen et al. (2010), we construct a sampling

distribution of the adjusted R2 by bootstrapping the time-series return data and factors by sampling

with replacement to estimate the adjusted R2. We repeat this procedure 10,000 times and report

the 5th and 95th percentiles of the sampling distribution of the adjusted R2. The testing period is

from July 1973 to June 2018.

We report the regression results of the total uncertainty factor in Panel A of Table 3. We
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find γUNC is significantly priced across different factor models. The price of total uncertainty risk

ranges from -9.32% to -4.55% per year. Total uncertainty factor also improves model fit. For

example, after adding the total uncertainty factor to FF6, the intercept γ0 becomes insignificant

(t-statistic=1.52) while the adjusted R2 increases from 0.71 to 0.78.

Panel B of Table 3 reports the results using the macro uncertainty factor. First, we see that

macro uncertainty is negatively priced in all models. The price of macro uncertainty risk γUNCma

is sizable, ranging from -13.93% to -8.29% per year across different augmented factor models.

Second, we see that ∆UNCma improves model performance. For example, the pricing error is

insignificant in FF5+∆UNCma (0.71% per year, t-statistic=1.64) and FF6+∆UNCma (0.58% per

year, t-statistic=1.54) . The results in Panels A and B of Table 3 are similar, which again suggests

that the pricing power of total uncertainty is mainly from macro uncertainty risk. In Panel C of

Table 3, we replace the macro uncertainty factor with the micro uncertainty factor. The price of

micro uncertainty risk is negligible and insignificant.

Figure 3 plots the prices of total uncertainty risk (UNC) and macro uncertainty risk (UNCma)

against industrial production growth. The prices of uncertainty risks are computed from the Fama-

French three-factor model augmented with the uncertainty factor. We see that the correlation

between the price of UNC (UNCma) and IP growth is 0.27 (0.25). Therefore, during recessions

(when IP growth is low), uncertainty increases and the price of uncertainty risk becomes more

negative. This is consistent with the explanations in Bali et al. (2017) and Alfaro et al. (2023).

Overall, these results provide evidence that the macro uncertainty factor explains the various

test assets with a significantly negative price of risk, while the micro uncertainty factor does not.

20



4. Pricing of uncertainty shocks: Mimicking uncertainty factors

The previous section used annual non-tradable uncertainty factors to perform asset pricing tests.

However, their statistical power might be limited by the sample size. We now construct monthly

mimicking portfolios for the uncertainty factors. We use mimicking uncertainty factors as our main

estimates in the rest of the paper as the monthly mimicking factors have more statistical power

and allow us to perform additional empirical tests.

4.1. Constructing mimicking uncertainty factors

As the productivity dispersion shocks are annual, to construct monthly mimicking portfolios,

we follow Adrian et al. (2014) and Chen and Yang (2019) by using a projection method. First, we

project the uncertainty shocks (∆UNC) onto a set of annual base asset returns:

∆UNC = κ0,UNC + κ′x,UNCX
a
t + ut, (14)

where Xa
t denotes the annual returns of some base assets in year t, and κ0,UNC and κx,UNC are

OLS regression coefficients.

We select base assets from Hou et al. (2015) and Hou et al. (2021) to track information in

productivity dispersion. As discussed in Section 1 and confirmed in Panel B of Table 1, uncertainty

is highly correlated with the investment factor, the profitability factor, and the expected investment

factor. Therefore, we consider eighteen size, investment, and profitability-sorted portfolios (2-by-

3-by-3) from Hou et al. (2015) as well as the EG factor from Hou et al. (2021) to extract as much

information as possible from ∆UNC.15 However, we can not include all eighteen portfolios as it

induces a multicollinearity problem. Also, we are limited by degrees of freedom as we only have

15We further discuss the rational of using the EG factor as a base asset in Section 5. Limited by the data availability,
we do not consider the mispricing portfolio as a base asset.
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forty-five annual uncertainty shocks.

We start by projecting uncertainty shocks onto each of the eighteen portfolios and the EG

factor. Then we select five of the eighteen portfolios, which have significant coefficients. The

base assets are Xa
t = [BMH, BLL, BLM, SLM, BLH, EG]. For the first five portfolios, the first

letter indicates the size group, small (S) or big (B); the second letter indicates the investment

group, low (L), medium (M), or high (H); and the third letter indicates the profitability group, low

(L), medium (M), and high (H). After we estimate κx,UNC at an annual frequency, we normalize

those coefficients: κ̃x,UNC =
κx,UNC

|Σκx,UNC | . The denominator is the sum of the absolute value of the

coefficients. The last step is to build the mimicking uncertainty portfolio at a monthly frequency,

by multiplying the normalized coefficients and the monthly base asset returns:

∆UNCt = κ̃′x,UNCX
m
t (15)

where Xm
t is the monthly returns of the base assets. When we construct the monthly uncertainty

factor, we assume a six month reporting gap between uncertainty shocks and stock returns, following

Fama and French (1993). We use the monthly mimicking portfolios for the rest of asset pricing

tests. We construct the mimicking macro (micro) uncertainty factor similarly including using the

same base assets.

We estimate the coefficients of Eq. (14) using the full sample. The normalized coefficients

are [0.08, -0.35, -0.23, 0.31, 0.11, -0.91]. We find that the EG factor coefficient is significant and

its magnitude is large at 0.91.16 We further explore this relationship in Section 5. Overall, the

mimicking portfolio tracks total uncertainty well. The annual correlation coefficient between the

total uncertainty shock and its mimicking portfolio is about 0.32. The annual correlation coeffi-

cient between the macro (micro) uncertainty shock and the mimicking macro (micro) uncertainty

16Note that the negative coefficient of -0.91 is due to normalization in κ̃x,UNC .
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portfolio is 0.24 (0.29).

To avoid look-ahead bias, we also construct the mimicking uncertainty factors in an expanding

window as a robustness test. The expanding window starts from 1997 to have a sufficient number of

observations. That is, the weights of the mimicking uncertainty factor are estimated from 1972 to

1997 first, then we extend the estimation period up to 2016. To estimate the weights with enough

degrees of freedom for the expanding window, we use five base assets: Xa
t = [SLL, BMM, SLM,

BLH, EG].

4.2. Mimicking uncertainty factors

Panel A of Table 4 present descriptive statistics for the mimicking uncertainty factors. Total

uncertainty (∆UNC) has a mean of -0.79% per month with a standard deviation of 2.23% per

month. The monthly Sharpe ratio of ∆UNC is -0.35. Macro uncertainty (∆UNCma) has a similar

Sharpe ratio of -0.39 as well as a mean of -0.82% per month and a standard deviation of 2.13%

per month. The monthly correlation between the mimicking portfolios of ∆UNC and ∆UNCma

is 0.90. However, micro uncertainty (∆UNCmi) has a very small Sharpe ratio of -0.03. This is

mainly driven by its high standard deviation of 5.52% per month and a small mean of -0.18% per

month.

Using the mimicking uncertainty portfolios, we examine if the total uncertainty factor is mainly

driven by the macro uncertainty factor. Panel B of Table 4 reports time-series regression results.

The regression results are similar to those reported in Panel B of Table 2. First, the coefficient

of ∆UNCma is 0.94 (t-statistic=32.45) in the univariate regression. ∆UNCma explains 81% of

∆UNC variations. Column (2) shows that adding ∆UNCmi contributes little to ∆UNC (R2 only

increases by 0.05). Again, we see that macro uncertainty (∆UNCma) captures most information

of total uncertainty (∆UNC) while the contribution of micro uncertainty (∆UNCmi) is negligible.
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Next, we investigate whether uncertainty is a risk factor by asking if other factor models explain

the mimicking uncertainty factor. Panels C through E of Table 4 report the alphas from the time-

series regression of the mimicking total uncertainty (∆UNC), macro uncertainty (∆UNCma),

and micro uncertainty (∆UNCmi), against various pricing factors, using the full sample.17 We

consider eight factor models, including the CAPM, FF3, FF4, FF5, FF6, HXZ, HMXZ, and SY.

Panel C shows that except HXMZ, the alphas of total uncertainty from all models are similar

and significantly negative, ranging from -0.86% to -0.51%. The alpha from the HMXZ model is

smaller but remains significant, -0.13% per month (t-statistic=-3.41). We find similar results for

macro uncertainty in Panel D. That is, except HXMZ, the alphas from all models are similar and

significantly negative, ranging from -0.91% to -0.48%. The alpha from the HMXZ model is smaller

but marginally significant, -0.03% per month (t-statistic=-1.94). Panel E shows that alphas of

∆UNCmi are mostly insignificant across different factor models.

Overall, Table 4 demonstrates that macro uncertainty is the main driver of total uncertainty,

which is not fully captured by the existing pricing factors, while the pricing of micro uncertainty is

negligible. Therefore, we will mainly use our macro uncertainty factor (∆UNCma) in the remaining

analyses.

4.3. Fama-MacBeth regressions

Our previous results show that macro uncertainty is a significant risk factor that is not explained

by many prevailing factor models while micro uncertainty is captured by many models. Next,

we explore the cross-sectional pricing power of ∆UNCma by running Fama-MacBeth two-pass

regressions.

Panel A of Table 5 reports the price of risk for each factor across different factor models, using

17The expanding-window results are similar.
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the full-sample estimation. First, we see that γUNCma is negatively priced with coefficient estimates

ranging from -0.82% to -0.80% across the different augmented factor models. Second, we see that

adding the macro uncertainty factor to the prevailing factor models improves model performance.

All of the augmented models have insignificant pricing errors. For example, the pricing error (γ0)

decreases from 0.33% (t-statistic=6.33) of FF3 to 0.00% (t-statistic=0.11) of FF3+∆UNCma. The

pricing error (γ0) decreases from 0.11% (t-statistic=2.81) of HXZ to 0.04% (t-statistic=1.34) of

HXZ+∆UNCma. Their adjusted R2s also increase after adding ∆UNCma to the models. For

example, the R2 increases from 0.19 of FF3 to 0.91 of FF3+∆UNCma. The R2 increases from 0.51

of HXZ to 0.89 of HXZ+∆UNCma. Bootstrap simulations further confirm that adding ∆UNCma

to the factor models improves their explanatory power. This suggests that ∆UNCma plays an

important role in explaining the cross-sectional return variation across the test portfolios.

To avoid a look-ahead bias, we use the expanding-window estimation and report results in Panel

B. Again, we see that UNCma is negatively priced. In particular, we see that the pricing error

becomes insignificant after adding the macro uncertainty factor to the FF3, FF4, FF5, FF6, HXZ,

and SY models.

For comparison, we replace the macro uncertainty factor (∆UNCma) with the micro uncertainty

factor (∆UNCmi) and report the results in Panels C and D. Clearly, ∆UNCmi does not contribute

to the return variation of the test portfolios. First, γUNCmi is insignificant across all augmented

factor models in Panels C and D. This is consistent with Panel E of Table 4, which reports the

insignificant mimicking micro uncertainty factor. Second, comparing the prevailing factor models

and the ∆UNCmi-augmented models, we see that γ0 does not change much and is still significant.

Third, the adjusted R2 also shows little improvement after adding ∆UNCmi in Panels C and D.

For completeness, we also consider three variations of uncertainty augmented factors models.

First, we directly use the total uncertainty (∆UNC) to augment the prevailing models. We find
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qualitative similar results, i.e., ∆UNC is negatively priced and the augmented models explain

various test assets. Second, we consider adding macro and micro uncertainty factors (∆UNCma

and ∆UNCmi) simultaneously to the prevailing models. We find that ∆UNCma is negatively

priced while ∆UNCmi is not priced. Last, we consider using the aggregate uncertainty factor

derived from aggregate TFP data (UNCagg) or the VIX. We construct the mimicking aggregate

uncertainty factor in a way similar to the mimicking macro uncertainty factor.

We find that the aggregate uncertainty factor is negatively priced, but its performance is weaker

than the macro uncertainty factor derived from the cross-section of TFPs estimated from firm-level

data. See Appendix C for more details. Overall, we conclude that adding the uncertainty factor

improves the explanatory power of prevailing factor models and its price of risk is significantly

positive in the cross section. More importantly, this is mainly driven by macro uncertainty, not

micro uncertainty.

4.4. Robustness checks: Examining noisy factors

The previous sections shows that the uncertainty factor, in particular the macro uncertainty

factor, explains various test assets. One might wonder whether our cross-sectional results are spu-

riously driven by noisy factors. Here we show that the uncertainty factors do not have explanatory

power by chance. Similar to Adrian et al. (2014), we randomly draw the uncertainty factor with

replacement. Then, we construct mimicking uncertainty portfolios and rerun the Fama-MacBeth

two-pass regressions. Because we draw factors randomly, the noisy factors should not perform as

well as the original uncertainty augmented factor models. We repeat this simulation 100,000 times

and estimate how likely the noisy factors could perform relative to the original model in Table 6.

This table reports the probability that the noisy factors generate higher R2s (“R2” column),

prices of uncertainty risk (“PRC” column), and Sharpe ratios of the uncertainty factor (“SR”
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column) relative to the original models. We also report two different joint probabilities. The “Joint

R2-PRC” column is the probability that the noisy factors simultaneously generate higher R2s and

prices of risk compared to the original models. The “Joint All” column is the probability that the

noisy factors generate higher R2s, prices of uncertainty risk, and Sharpe ratios of the uncertainty

factor relative to the original models.

In Panel A, we test the noisy total uncertainty (∆UNC) augmented factor models. All noisy

models perform poorly. Taking the noisy total uncertainty augmented FF6 model as an example,

the probability of the noisy factors performing as well as the original model is only 4.65%, 0.00%,

and 0.00% in terms of the R2, the intercept, and the price of risk, respectively. Moreover, their

joint probabilities are all zero. That is, it is almost impossible for the noisy factors to achieve the

same explanatory power as the original models. In Panel B, we use the macro uncertainty factor

(∆UNCma) and see very similar results. Turning to the micro uncertainty (∆UNCmi) in Panel

C, we see the probabilities increase sharply. This suggests that the noisy factors might perform

similarly to the original model for micro uncertainty. This is not surprising since we find that

the micro uncertainty factor is not priced. Lastly, we perform similar tests with the non-tradable

uncertainty factors directly and find similar results.18 Overall, these results suggest that the asset

pricing power of macro uncertainty is not due to chance.

5. Interpreting the expected investment growth factor

Tables 1 and 4 show that total uncertainty (macro uncertainty) is highly correlated with the

expected investment growth factor (EG) from Hou et al. (2021). We now explore why the EG

factor might capture uncertainty risk. This helps us better understand the success of the EG factor

and the q5-model.

18These results are available by request.

27



We first discuss the economic linkage between the EG factor and uncertainty risk. Then, we

relate the cross-sectional dispersion of EG predictors to the uncertainty factor. Lastly, we compare

the pricing power of the EG factor and the uncertainty factor.

5.1. The expected investment growth factor

Motivated by Eq. (5), Hou et al. (2015) introduce the q-factor model which includes the market

portfolio (MKT), the size factor (QME), the investment factor (QIA), and the profitability factor

(QROE). Hou et al. (2021) further separate the numerator of (5) into the dividend yield, [Xit+1 +

(a/2)(Iit+1/Kit+1)
2]/[1+a(Iit/Kit)], and the capital gain, (1−δ)[1+a(Iit+1/Kit+1)]/[1+a(Iit/Kit)],

and suggest that the second part captures expected investment growth (EG). They propose the q5

model by adding the EG factor to their q-factor model and demonstrate its empirical success by

explaining many test portfolios and other pricing factors.

We replicate the EG factor by following Hou et al. (2021). To predict expected future investment

growth, Hou et al. (2021) run Fama-MacBeth regressions, using weighted least squares with market

capitalization, as follows:

d

(
Iit
Kit

)
= β0 + βQ log Qit−1 + βCoP CoPit−1 + βdROE dROEit−1 + ϵit, (16)

where d
(

Iit
Kit

)
is the first difference of the investment-to-assets of firm i at time t, Q is Tobin’s q,

CoP is the operating cashflow, dROE is the first difference between current ROE and the four-

quarter-lagged ROE. They estimate the regression coefficients using a 120-month rolling window

and estimate the predicted future investment growth as follows:

Et[dIit+1/Kit+1] = β̂0 + β̂Q logQit + β̂CoP CoPit + β̂dROE dROEit. (17)
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After estimating Eq. (17), they sort stocks on size and Et[dIit+1/Kit+1] into 2-by-3 portfo-

lios. They then construct the expected investment growth factor (EG) as the difference between

the average returns of two high Et[dIit+1/Kit+1] portfolios and the average returns of two low

Et[dIit+1/Kit+1] portfolios, following Fama and French (1993). During our sample period, the EG

factor has a mean of 0.81% per month, a standard deviation of 2.02%, and an annual Sharpe ratio

of 0.40. Also, untabulated results show that the prevailing factor models cannot explain the EG

factor.

Why is the EG factor highly correlated with the uncertainty factor? First, we see from Eq.

(8) that uncertainty contributes to expected investment growth. In fact, after controlling for other

pricing factors, the EG factor mainly captures uncertainty risk. Second, the empirical measure of

expected investment growth captures the cross-sectional dispersion of productivity. When predict-

ing the future investment growth in Eq. (17), the coefficients of the Fama-MacBeth regressions

depend on the cross-sectional variation of each predictor and these cross-sectional variations embed

productivity dispersion. For example, productivity dispersion clearly affects the cross-sectional

variations of Tobin’s q, operating cash flows, and ROE. Therefore, the EG factor constructed from

running Fama-MacBeth regressions can capture productivity dispersion.19 That is, we expect that

productivity dispersion is significantly correlated with the cross-sectional dispersions of the three

predictors in Eq. (16). We now empirically verify these two reasons.

5.2. Macro uncertainty and expected investment growth

Is the pricing power of EG driven by macro uncertainty risk, as suggested by Eq. (8)? We

directly decompose EG into predicted and residual components by regressing EG on macro un-

certainty. Following Hou et al. (2021), we match the non-tradable ∆UNCma factor to firm-level

19Bachmann and Bayer (2014) show that shocks to productivity dispersion can generate procyclical cross-sectional
investment rate dispersion. This implies that expected investment growth can be driven by productivity dispersion
shocks.
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EG with at least a four-month reporting gap. We regress EG on ∆UNCma for each firm, using

the full sample.20 We sort all stocks into decile portfolios based on either their predicted EG or

residual EG. Value-weighted portfolio 10 (1) has the highest (lowest) predicted or residual EG.

Table 7 computes alphas for the host of cross-sectional asset pricing model previously considered.

Raw returns are also reported

Panel A presents results for the 10 portfolios sorted by predicted EG. Similar to Hou et al. (2021),

the portfolio raw returns monotonically increase with predicted EG. The long-short portfolio (i.e.,

Portfolio 10 - Portfolio 1) has an average return of 0.89% (t-statistic = 3.59) per month. Its alpha

is also significantly positive from all benchmark models. For example, the long-short portfolio has

an alpha of 0.91% (t-statistic=4.79) and 0.86% (t-statistic = 4.07) for the FF6 and HXZ models,

respectively. That is, we see that stocks with higher predicted EG have higher expected returns

and the predicted EG is not captured by existing risk factors. However, Panel B shows that the

residual EG does not generate significant alphas across all asset pricing models. Even though the

long-short portfolio return is 0.77% per month (t-statistic=3.63), the alphas for the FF6, HXZ, and

SY models are insignificant. That is, residual EG does not provide additional information beyond

existing asset pricing factors. Therefore, we see that the pricing power of EG is driven by macro

uncertainty risk.

5.3. Macro uncertainty and the predictors of expected investment growth

Next, we explore which predictors of the expected investment growth capture uncertainty risk.

In each year, we calculate the cross-sectional standard deviation of each predictor in Eq. (16). Then,

we run time-series regressions of the cross-sectional dispersions of thee predictors against macro

uncertainty (UNCma) in Panel A of Table 8. First, UNCma explains the cross-sectional dispersions

20To avoid look-ahead bias, we also use an expanding-window to decompose EG into predicted and residual com-
ponents and find similar results. See Table D1) in Appendix D.
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of three EG predictors very well. For example, UNCma explains the cross-sectional dispersion of

operating cash flows (DISCOP ) with a coefficient of coefficient of 0.28 (t-statistic=3.21) and an

R2 of 0.42. This suggests that UNCma alone explains the cross-sectional variation of operating

cash flows well. Also, UNCma explains the cross-sectional dispersions of Tobin’s Q (DISQ) and

changes in ROE (DISdROE). The R
2 for DISQ and DISdROE are 0.25 and 0.38, respectively.21 In

Panel B, we run similar regressions using micro uncertainty (UNCmi). The regression results show

that UNCmi explains little of the cross-sectional dispersions of the EG predictors, as UNCmi is

insignificant in all regressions and the highest R2 is 0.11 only.

Turning to the asset pricing tests, we explore whether the loadings of the EG factor and the

uncertainty factors are correlated in Table 9. We estimate the loadings of a set of test assets on the

EG factor, the cross-sectional dispersions of its three predictors, the total uncertainty factor, the

macro uncertainty factor, and the micro uncertainty factors. The test assets include 45 portfolios

(used in Table 3) and the tested pricing factors. First, we see that loadings on EG are highly

correlated with those of the total uncertainty factor and the macro uncertainty factor, but not

the micro uncertainty factor, as shown in Columns (1) and (2). Examining loadings on the three

predictors of EG, we see that operating cash flows (COP ) are highly correlated with the total

uncertainty factor and macro uncertainty factor, but Tobin’s q and changes in ROE (DISdROE)

have a small correlation with the uncertainty factors. This is consistent with the finding of Hou

et al. (2021), i.e., operating cash flows are the strongest predictor of future investment growth.22

Therefore, the evidence from the factor loadings further strengthens the connection between the

EG and uncertainty factors.

Taken together, Tables 8 and 9 suggest that macro uncertainty explains the EG factor via the

cross-sectional dispersions of its predictors, especially the operating cash flow component. Also,

21We find similar results for total uncertainty. See Appendix E for more details.
22Appendix F further compares the pricing power of these three EG predictors. That is, we augment the Hou et al.

(2015) q-factor model with each predictor of EG. We find that COP is the strongest predictor.
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micro uncertainty cannot capture the same fundamental risks of the EG factor because it does not

correlate with the cross-sectional dispersions of the EG predictors.

5.4. Comparing the EG factor and the uncertainty factor: Time-series and cross-sectional

regressions

Table 10 reports time-series regressions to test whether the EG factor and the uncertainty factor

share the same fundamental risks. In Panel A, we present time-series regression coefficients of the

EG factor on the factor models augmented with the macro uncertainty factor (∆UNCma). Uncon-

ditionally, the EG factor has an average return of 0.81% per month (t-statistic=8.77). However,

the FF3, FF4, FF5, FF6, HXZ, and SY augmented with macro uncertainty can fully explain the

EG factor with very small alphas. The loading of ∆UNCma is significant and close to -1. When

we replace ∆UNCma with ∆UNCmi in Panel B of Table 10, we see that the EG factor has a

significant intercept in all regressions. Therefore, it seems that the EG factor captures a large

amount of macro uncertainty risk, which contributes to its pricing power.23

We further compare the pricing power of the EG factor and the uncertainty factor by compar-

ing the Hou et al. (2021) q5 model (HMXZ) with the macro uncertainty-augmented HXZ model

(HXZ+∆UNCma) and the micro uncertainty-augmented HXZ model (HXZ+∆UNCmi). Panels A

and C of Table 5 report the prices of risk and the pricing errors of the Fama-MacBeth regressions,

using the full-sample estimation. First, the pricing error (γ0) from HMXZ is 0.07% (t-statistic=2.10)

while that of HXZ+∆UNCma is 0.04% (t-statistic=1.34) in Panel A. Again, ∆UNCmi does not

play a role in the regressions as ∆UNCmi is insignificant throughout in Panel C. Second, γEG

is 0.79% (t-statistic=7.70) in the HMXZ model while γUNCma is -0.81% (t-statistic=-7.89) in the

23Appendix G reports results using total uncertainty (∆UNC) to explain the EG factor for the full-sample and
expanding-window estimations. Given ∆UNC contains both macro and micro uncertainty risk, we find blended
results. Under the full-sample estimation, alphas are significantly smaller than under the micro uncertainty case,
but still statistically significant except for the SY model. Under the expanding-window estimation, the alphas are
generally small and no longer significant except for the CAPM.
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HXZ+∆UNCma model. That is, EG and ∆UNCma have a similar price of risk. In Panels B and D

of Table 5, we estimate the price of risk using the expanding-window estimation. The main results

are qualitatively similar to those in Panels A and C. The γ0 from HMXZ is 0.06% (t-statistic=0.96)

while that from HXZ+∆UNCma is 0.09% (t-statistic=1.50). Also, γEG and γUNCma are 0.61% (t-

statistic=3.32) and -0.68% (t-statistic=-3.75), while γUNCmi is -1.47% (t-statistic=-0.71).24 Over-

all, we see that the Hou et al. (2015) q-factor model augmented with the macro uncertainty factor

performs similarly to the Hou et al. (2021) q5-factor model (HMXZ).

5.5. Comparing various models: Maximum squared Sharpe ratio

Table 5 uses a set of test assets as the left-hand-side variables to examine the pricing power of

different models. This approach is widely used (see, e.g., Fama and French, 1996, 2015, 2016, 2017;

Hou et al., 2015, 2019, 2021). However, this approach is often sensitive to the choice of test assets.

Alternatively, following Barillas and Shanken (2017) and Fama and French (2018), we use the right-

hand-side approach to compare various models. To minimize the max squared Sharpe ratio of the

intercepts for all left-hand-side portfolios, we can rank competing models on the maximum squared

Sharpe ratio for model factors (Barillas and Shanken, 2017).

To test a factor model i with factors fi, consider time-series regressions of the test assets (Πi),

which include non-factor test assets and factors from other competing models, on model i’s factors

fi. Suppose the vector of intercepts from the time-series regressions is ai and the residual covariance

matrix is Σi. The maximum squared Sharpe ratio of the intercepts is

Sh2(ai) = a′iΣ
−1
i ai, (18)

24As a robustness check, we replace macro uncertainty (∆UNCma) with total uncertainty (∆UNC) in Appendix
H and find similar results.
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where Sh2(·) denotes the maximum squared Sharpe ratio. Gibbons et al. (1989) further shows

that the maximum squared Sharpe ratio of the intercepts is the difference between the maximum

squared Sharpe ratio constructed by Πi and model i’s factors and that constructed by model i’s

factors only:

Sh2(ai) = Sh2(Πi, fi)− Sh2(fi). (19)

As Πi and fi together include all competing factors, Sh2(Πi, fi) is independent of i. Hence, to

minimize the maximum squared Sharpe ratio of the intercepts, we only need to find the maximum

squared Sharpe ratio for model factors fi, i.e., Sh
2(fi). The maximum squared Sharpe ratio can

be computed from the tangent portfolio formed by model factors.

Table 11 presents the maximum squared Sharpe ratios for various factor models. Limited by

data availability, we compare the FF3, FF4, FF5, FF6, HXZ, HMXZ, and macro uncertainty,

micro uncertainty, or total uncertainty augmented models.25 First, we see that adding macro

uncertainty consistently improves the maximum squared Sharpe ratio across all models, suggesting

the importance of macro uncertainty risk. But adding micro uncertainty only significantly improves

the FF6 and the HXZ models, while adding total uncertainty only significantly improves the FF3

model. Second, we see that HXMZ has the highest maximum squared Sharpe ratio (0.30) while

FF6+∆UNCma and HXZ+∆UNCma have similar maximum squared Sharpe ratio (0.26 and 0.27,

respectively). Again, this suggest that the EG factor and the macro uncertainty factor are very

similar.

We close this section by concluding that the expected investment growth factor captures macro

uncertainty risk. This contributes to the pricing power of the expected investment growth factor

and the success of the q5-model.

25We cannot compute Sh2(f) for the SY model as we only have the data for the spread factors, not the corresponding
portfolios.
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6. Conclusions

Both macro and micro uncertainty affect real economic activities. To match business cycle

statistics, the macroeconomic literature often assumes a prominent role for micro uncertainty,

without acknowledging how micro uncertainty might be proxying for macro uncertainty. In this

paper, we use firm-level productivity estimates to decompose total uncertainty into macro and

micro uncertainty. We find that macro uncertainty is strongly countercyclical and priced among a

cross section of stocks, but micro uncertainty is almost acyclical and not priced. During recessions,

both macro uncertainty and the price of macro uncertainty risk increase. Overall, our results from

financial markets cast doubt on the importance of micro uncertainty on the business cycle.

Macro uncertainty appears to be a missing factor in prevailing factor models. Moreover, we

find that macro uncertainty risk drives the pricing power of the expected investment growth factor

proposed in Hou et al. (2021), because uncertainty affects both expected returns and expected

investment growth. Empirically, both uncertainty and EG predictors, in particular operating cash

flows, capture cross-sectional productivity dispersion. This suggests an alternative way to under-

stand the success of the EG factor and the q5-model.
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Fig. 1. Uncertainty and industrial production growth

This figure plots the time series of total uncertainty (UNC), macro uncertainty (UNCma), and
micro uncertainty (UNCmi) against the annual log industrial production (IP) growth in the United
States. Series are computed from Christiano and Fitzgerald (2003) band-pass filter and standard-
ized. The shaded areas are NBER recession periods.
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(a) Total uncertainty and return dispersions
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(b) Macro uncertainty and return dispersions
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(c) Micro uncertainty and return dispersions

Fig. 2. Uncertainty and stock return dispersions

These figures plot the time series of total uncertainty (UNC), macro uncertainty (UNCma), and
micro uncertainty (UNCmi) against cross-sectional return dispersions, including total stock return
dispersion (RD), the systematic stock return dispersion (RDsys) and the idiosyncratic return dis-
persion (RDidio) computed from the Carhart four-factor model. All series are standardized. The
shaded areas are NBER recession periods.
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Fig. 3. Price of uncertainty risk and industrial production growth

This figure plots the prices of total uncertainty risk (UNC) and macro uncertainty risk (UNCma)
against the annual log industrial production (IP) growth in the United States. All series are
standardized. The shaded areas are NBER recession periods.
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Table 2. Decomposing total uncertainty into macro and micro uncertainty

Panel A presents the time-series regression of aggregate uncertainty on macro uncertainty (UNCma) and micro
uncertainty (UNCmi). Aggregate uncertainty (UNCagg) is the conditional standard deviation of a generalized
autoregressive conditional heteroskedasticity GARCH(1,1) on aggregate TFP, obtained from the Federal Reserve
Bank of San Francisco. Panel B presents the time-series regression of total uncertainty (∆UNC) on macro uncertainty
(UNCma) and micro uncertainty (UNCmi). Newey-West adjusted t-statistics with 5-year lags are in parentheses.
The testing period is from 1972 to 2016.

Panel A: Regression of aggregate uncertainty against macro and micro uncertainty

(1) (2)
UNCagg UNCagg

UNCma 0.25 0.24
(2.23) (2.21)

UNCmi -0.17
(-1.25)

R2 0.10 0.11

Panel B: Regression of total uncertainty against macro and micro uncertainty

(1) (2)
∆UNC ∆UNC

∆UNCma 0.60 0.73
(10.11) (9.62)

∆UNCmi 0.53
(3.11)

R2 0.75 0.81
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Table 4. Mimicking uncertainty factor returns and their alphas

Panel A presents the monthly mean (% per month), standard deviation (% per month, SD), monthly Sharpe ratio
(SR), and correlations for the mimicking uncertainty portfolios. Panel B reports the time-series regression of the mim-
icking total uncertainty portfolio on the mimicking macro uncertainty portfolio and the micro uncertainty portfolio.
Panels C - E reports alphas of the mimicking total uncertainty portfolio (∆UNC), the mimicking macro uncertainty
portfolio (∆UNCma), and the mimicking micro uncertainty portfolio (∆UNCmi) from various factor models. Factor
models include the CAPM, Fama and French (1993) three-factor model (FF3), Carhart (1997) four-factor model
(FF4), Fama and French (2015) five-factor model (FF5), Fama and French (2018) six-factor model (FF6), Hou et al.
(2015) q-factor model (HXZ), Hou et al. (2021) q5 model (HMXZ), and Stambaugh and Yuan (2017) model (SY). In
Panels B-E, Newey-West adjusted t-statistics with 6-month lags are in parentheses. The testing period is from July
1973 to June 2018.

Panel A: Statistics of monthly mimicking uncertainty portfolios

Mean SD SR ∆UNC ∆UNCma ∆UNCmi

∆UNC -0.79 2.23 -0.35
∆UNCma -0.82 2.13 -0.39 0.90
∆UNCmi -0.18 5.52 -0.03 -0.03 -0.27

Panel B: Regression of mimicking uncertainty portfolios

(1) (2)
∆UNC ∆UNC

∆UNCma 0.94 1.01
(32.45) (37.81)

∆UNCmi 0.09
(9.46)

R2 0.81 0.86

Panel C: Abnormal return of total uncertainty factor (∆UNC)

Raw CAPM FF3 FF4 FF5 FF6 HXZ HMXZ SY
∆UNC -0.79 -0.86 -0.81 -0.77 -0.63 -0.62 -0.63 -0.13 -0.51
t-stat -8.27 -8.84 -9.59 -8.68 -8.28 -7.82 -8.35 -3.41 -5.33

Panel D: Abnormal return of macro uncertainty factor (∆UNCma)

Raw CAPM FF3 FF4 FF5 FF6 HXZ HMXZ SY
∆UNCma -0.82 -0.91 -0.90 -0.78 -0.68 -0.61 -0.57 -0.03 -0.48

t-stat -9.07 -10.02 -11.38 -9.94 -8.15 -7.97 -6.43 -1.94 -5.51

Panel E: Abnormal return of micro uncertainty factor (∆UNCmi)

Raw CAPM FF3 FF4 FF5 FF6 HXZ HMXZ SY
∆UNCmi -0.18 0.14 0.18 -0.03 0.03 -0.12 -0.41 -0.23 0.04

t-stat -0.77 0.69 0.89 -0.13 0.12 -0.59 -1.97 -1.01 0.16
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Table 6. Robustness: Noisy factors

Panel A examines how likely “noisy” factors could generate the cross-sectional results in Table 5. Following Adrian
et al. (2014), we run 100,000 simulations where we draw randomly from the empirical distribution of an uncertainty
factor (∆UNC,∆UNCma, or ∆UNCmi) with replacement. We construct the monthly mimicking uncertainty factor
and rerun Fama-MacBeth two-pass regressions. For each statistic, we report the probability that noisy factors do
as well as the original models (i.e., the probability that noisy factors generate R2s as large as the original models
(in “R2” column), prices of risk of an uncertainty factor as large as original models (in “PRC” column), or Sharpe
ratio of an uncertainty factor as large as original mimicking uncertainty factors (in “SR” column). We also report
the joint probabilities that noisy factors simultaneously generate higher R2s and larger price of risk than the original
models (in “Joint R2-PRC” column) and that noisy factors simultaneously generate higher R2, larger prices of
risk, and larger Sharpe ratio than the original models (in “Joint All” column). Panel A, B, and C report results
from total uncertainty (∆UNC), macro uncertainty (∆UNCma), and micro uncertainty (∆UNCmi), respectively.
Test assets are 45 portfolios and the tested pricing factors, including 6 size and book-to-market sorted portfolios,
6 size and operating profitability sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum
sorted portfolios, 6 size and expected investment growth sorted portfolios, 10 operating accrual sorted portfolios,
and 5 Fama-French industry portfolios. Tested factor models are Fama and French (1993) three-factor model (FF3),
Carhart (1997) four-factor model (FF4), Fama and French (2015) five-factor model (FF5), Fama and French (2018)
six-factor model (FF6), Hou et al. (2015) q-factor model (HMZ), and Stambaugh and Yuan (2017) model (SY). All
numbers are in percentages. The testing period is July 1973 to June 2018 except for Stambaugh and Yuan (2017)
models. The testing period of Stambaugh and Yuan (2017) model is July 1973 to June 2016.

Panel A: Noisy ∆UNC-augmented factor models

R2 PRC SR Joint R2-PRC Joint All
FF3+∆UNC 5.26 0.00 0.00 0.00 0.00
FF4+∆UNC 4.74 0.00 0.00 0.00 0.00
FF5+∆UNC 5.45 0.00 0.00 0.00 0.00
FF6+∆UNC 4.65 0.00 0.00 0.00 0.00
SY+∆UNC 5.78 0.00 0.00 0.00 0.00

HXZ+∆UNC 4.10 0.00 0.00 0.00 0.00

Panel B: Noisy ∆UNCma-augmented factor models

R2 PRC SR Joint R2-PRC Joint All
FF3+∆UNCma 3.02 0.00 0.00 0.00 0.00
FF4+∆UNCma 3.97 0.00 0.00 0.00 0.00
FF5+∆UNCma 3.76 0.00 0.00 0.00 0.00
FF6+∆UNCma 4.62 0.00 0.00 0.00 0.00
SY+∆UNCma 6.15 0.00 0.00 0.00 0.00

HXZ+∆UNCma 4.46 0.00 0.00 0.00 0.00

Panel C: Noisy ∆UNCmi-augmented factor models

R2 PRC SR Joint R2-PRC Joint All
FF3+∆UNCmi 58.77 94.02 96.76 53.64 53.64
FF4+∆UNCmi 47.90 98.00 96.76 45.91 44.66
FF5+∆UNCmi 53.75 96.34 96.76 50.10 50.10
FF6+∆UNCmi 45.74 98.37 96.76 44.11 42.50
SY+∆UNCmi 32.95 97.99 96.24 30.95 29.19

HXZ+∆UNCmi 47.12 98.30 96.76 45.42 43.88
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Table 7. Returns to portfolios sorted by the predicted and residual expected investment
growth

All stocks are sorted into 10 portfolios, based on the predicted expected investment growth (Panel A) or residual
expected investment growth (Panel B). We decompose the expected investment growth (EG) into predicted and
residual components by regressing EG against macro uncertainty (∆UNCma) for each firm using the full sample. We
compute the value-weighted portfolio returns, and the alphas from the CAPM, Fama and French (1993) three-factor
model (FF3), Carhart (1997) four-factor model (FF4), Fama and French (2015) five-factor model (FF5), Fama and
French (2018) six-factor model (FF6), Hou et al. (2015) q-factor model (HMZ), and Stambaugh and Yuan (2017)
model (SY). Newey-West t-statistics with six-month lags are in parenthesis. 10-1 indicates the difference between
Portfolio 10 (high predicted or residual expected investment growth) and Portfolio 1 (low predicted or residual
expected investment growth). All returns are multiplied by 100. The testing period is from July 1973 to June 2018
except for Stambaugh and Yuan (2017) model. The testing period of Stambaugh and Yuan (2017) is July 1973 to
December 2016.

Panel A: Portfolios sorted by predicted EG

1 2 3 4 5 6 7 8 9 10 10-1
Raw -0.16 0.34 0.47 0.65 0.70 0.62 0.70 0.61 0.72 0.73 0.89

(-0.39) (1.05) (1.99) (2.91) (3.22) (2.92) (3.59) (3.23) (3.32) (2.91) (3.59)
CAPM -1.05 -0.47 -0.17 0.01 0.10 0.03 0.16 0.04 0.14 0.06 1.11

(-4.33) (-3.21) (-1.92) (0.14) (1.05) (0.36) (1.92) (0.50) (1.51) (0.53) (4.91)
FF3 -0.94 -0.49 -0.13 -0.01 0.04 0.01 0.14 0.06 0.23 0.26 1.20

(-4.83) (-3.43) (-1.55) (-0.12) (0.41) (0.17) (1.82) (0.80) (2.87) (2.37) (6.14)
FF4 -0.80 -0.44 -0.09 0.02 0.03 0.03 0.09 0.09 0.23 0.35 1.15

(-4.43) (-3.27) (-1.05) (0.25) (0.35) (0.44) (1.14) (1.16) (2.97) (2.73) (6.02)
FF5 -0.44 -0.24 -0.08 -0.05 -0.13 -0.09 -0.06 -0.01 0.20 0.48 0.92

(-2.23) (-1.98) (-0.79) (-0.61) (-1.45) (-1.23) (-0.77) (-0.18) (2.45) (3.79) (4.76)
FF6 -0.38 -0.22 -0.06 -0.02 -0.12 -0.07 -0.08 0.02 0.21 0.53 0.91

(-2.04) (-1.85) (-0.55) (-0.30) (-1.40) (-0.95) (-1.18) (0.21) (2.56) (3.87) (4.79)
HXZ -0.31 -0.17 -0.05 -0.02 -0.13 -0.06 -0.05 0.00 0.25 0.55 0.86

(-1.34) (-1.18) (-0.48) (-0.21) (-1.30) (-0.76) (-0.59) (0.05) (2.45) (3.65) (4.07)
SY -0.39 -0.19 0.01 -0.03 -0.08 0.03 -0.03 0.01 0.13 0.40 0.79

(-1.68) (-1.57) (0.11) (-0.40) (-0.95) (0.33) (-0.34) (0.17) (1.66) (2.31) (3.38)

Panel B: Portfolios sorted by residual EG

1 2 3 4 5 6 7 8 9 10 10-1
Raw 0.28 0.18 0.45 0.53 0.65 0.71 0.79 0.79 0.97 1.06 0.77

(0.99) (0.68) (2.05) (2.49) (3.06) (3.57) (3.82) (3.83) (4.57) (4.44) (3.63)
CAPM -0.46 -0.52 -0.18 -0.07 0.05 0.18 0.21 0.21 0.39 0.42 0.88

(-3.05) (-4.48) (-2.50) (-1.01) (0.70) (2.24) (2.60) (2.61) (3.79) (2.95) (3.79)
FF3 -0.32 -0.44 -0.15 -0.06 0.06 0.15 0.20 0.19 0.43 0.43 0.75

(-2.42) (-3.42) (-2.06) (-0.77) (0.74) (1.84) (2.72) (2.55) (4.25) (3.42) (3.68)
FF4 -0.16 -0.30 -0.08 -0.02 0.01 0.11 0.16 0.16 0.29 0.32 0.48

(-1.26) (-2.25) (-1.08) (-0.31) (0.07) (1.36) (2.17) (2.20) (2.98) (2.52) (2.43)
FF5 -0.08 -0.27 -0.16 -0.14 0.01 -0.03 0.04 0.06 0.28 0.35 0.43

(-0.57) (-2.28) (-2.07) (-1.89) (0.08) (-0.40) (0.63) (0.71) (2.14) (2.67) (1.96)
FF6 0.02 -0.17 -0.10 -0.11 -0.03 -0.04 0.03 0.05 0.19 0.28 0.25

(0.17) (-1.43) (-1.35) (-1.49) (-0.35) (-0.55) (0.41) (0.60) (1.66) (2.16) (1.22)
HXZ 0.07 -0.19 -0.10 -0.11 0.00 -0.03 0.04 0.06 0.26 0.33 0.26

(0.52) (-1.57) (-1.30) (-1.30) (-0.01) (-0.34) (0.54) (0.64) (1.62) (2.23) (1.14)
SY 0.08 -0.12 -0.05 -0.12 -0.08 -0.03 0.07 -0.02 0.01 0.11 0.03

(0.49) (-0.92) (-0.67) (-1.61) (-1.05) (-0.37) (0.93) (–0.17) (0.13) (0.90) (0.15)
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Table 8. Using uncertainty to explain the cross-sectional dispersions of EG predictors

Panel A reports the coefficients, t-statistics (t-stat), and R2 from the time-series regression of the cross-sectional
dispersion of each EG predictor against the macro uncertainty (UNCma). Predictors are operating cash flows
(DISCOP ), Tobin’s q (DISQ), and change in return on equity (DISdROE). Panel B runs similar regressions, using
the micro uncertainty (UNCmi). Newey-West t-statistics with 5-year lags are used. The testing period is from 1972
to 2016.

Panel A: Using macro uncertainty

DISCOP DISQ DISdROE

UNCma 0.28 0.85 0.44
t-stat 3.21 2.34 3.50

R2 0.42 0.25 0.38

Panel B: Using micro uncertainty

DISCOP DISQ DISdROE

UNCmi 0.37 1.05 0.64
t-stat 1.62 1.29 1.52

R2 0.11 0.06 0.11
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Table 9. Examining loadings of uncertainty factor and EG

This table presents the cross-sectional regression results of loadings of EG and its predictors against loadings of total
uncertainty (∆UNC), macro uncertainty (∆UNCma), and micro uncertainty (∆UNCmi). βEG is the factor loading
of expected investment growth factor. βCOP is the factor loading of operating cash flow factor. βQ is the factor
loading of Tobin’s q factor. βdROE is the factor loading of the change in return on equity factor. We estimate all
factor loadings of uncertainty, EG, and EG predictors with Hou et al. (2015) q-factors. Test assets are 45 portfolios
and tested pricing factors, including 6 size and book-to-market sorted portfolios, 6 size and operating profitability
sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum sorted portfolios, 6 size and expected
investment growth sorted portfolios, 10 operating accruals sorted portfolios, and 5 Fama-French industry portfolios.
The testing period is from July 1973 to June 2018.

(1) (2) (3) (4) (5) (6) (7) (8)

βEG βEG βDISCOP βDISCOP βDISQ βDISQ βDISdROE βDISdROE

βUNC -0.91 -0.48 -0.33 -0.21
t-stat -4.39 -3.20 -1.53 -0.67

βUNCma -1.08 -0.70 -0.05 0.19
t-stat -3.60 -3.56 -0.15 0.40

βUNCmi -0.03 -0.05 -0.14 -0.07
t-stat -0.31 -0.73 -1.16 -0.44

R2 0.29 0.37 0.18 0.41 0.05 0.06 0.01 0.00
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Table 10. Explaining the EG factor with uncertainty-augmented factor models

Panel A presents the abnormal returns and the factor loadings of EG factor from various macro uncertainty
(∆UNCma)-augmented factor models, using the full sample. Panel B reports the abnormal returns and the fac-
tor loadings of EG factor from various micro uncertainty (∆UNCmi)-augmented factor models. Factor models
include the market model (CAPM), Fama and French (1993) three-factor model (FF3), Carhart (1997) four-factor
model (FF4), Fama and French (2015) five-factor model (FF5), Fama and French (2018) six-factor model (FF6),
Stambaugh and Yuan (2017) model (SY), and Hou et al. (2015) q-factor model (HXZ). All returns are multiplied
with 100. Newey-West adjusted t-statistics (t-stat) with 6-month lags are provided. R2 denotes the explanatory
power of the corresponding factor model. The testing period is from July 1973 to June 2018.

Panel A: Factor models augmented by macro uncertainty

α
Raw 0.81
t-stat 8.77

α MKT ∆UNCma R2

CAPM 0.15 -0.06 -0.85 0.88
t-stat 3.74 -6.31 -24.77

α MKT SMB HML ∆UNCma R2

FF3 0.01 -0.08 0.19 -0.06 -1.00 0.94
t-stat 0.31 -10.83 20.27 -6.46 -51.24

α MKT SMB HML UMD ∆UNCma R2

FF4 0.01 -0.07 0.18 -0.05 0.03 -0.97 0.94
t-stat 0.26 -11.24 18.94 -4.12 2.71 -47.55

α MKT SMB HML CMA RMW ∆UNCma R2

FF5 0.00 -0.09 0.22 0.01 -0.20 0.04 -1.04 0.96
t-stat 0.05 -13.89 17.5 0.79 -7.69 1.86 -54.05

α MKT SMB HML CMA RMW UMD ∆UNCma R2

FF6 0.00 -0.09 0.21 0.03 -0.20 0.04 0.03 -1.01 0.96
t-stat -0.04 -14.33 20.20 2.20 -9.26 2.26 4.47 -62.10

α MKT MISPME MGMT PERF ∆UNCma R2

HXZ -0.01 -0.09 0.22 -0.21 0.06 -1.05 0.98
t-stat -0.52 -21.00 28.33 -15.85 5.77 -84.38

α MKT QME QIA QROE ∆UNCma R2

SY 0.00 -0.08 0.18 -0.06 0.05 -0.94 0.95
t-stat -0.04 -8.93 16.16 -4.27 5.20 -54.10
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Panel A: Factor models augmented by micro uncertainty

α MKT ∆UNCmi R2

CAPM 0.76 -0.01 0.14 0.26
t-stat 9.35 -0.24 3.70

α MKT SMB HML ∆UNCmi R2

3FF 0.78 0.00 -0.13 0.03 0.13 0.30
t-stat 9.47 0.13 -3.73 0.59 3.92

α MKT SMB HML UMD ∆UNCmi R2

4FF 0.71 -0.02 -0.14 0.10 0.14 0.08 0.37
t-stat 8.93 -0.68 -5.06 2.00 4.11 2.95

α MKT SMB HML CMA RMW ∆UNCmi R2

5FF 0.68 -0.03 -0.07 -0.08 0.29 0.29 0.05 0.38
t-stat 7.33 -0.92 -1.86 -1.57 3.14 3.41 2.43

α Mktrf SMB HML CMA RMW UMD ∆UNCmi R2

6FF 0.61 -0.06 -0.07 0.01 0.25 0.32 0.15 0.00 0.46
t-stat 7.43 -2.20 -2.44 -2.18 0.17 3.44 5.32 0.03

α MKT MISME MGMT PERF ∆UNCmi R2

SY 0.44 0.03 -0.04 0.32 0.24 0.04 0.51
t-stat 5.08 1.12 -1.29 7.02 7.71 1.97

α MKT QME QIA QROE ∆UNCmi R2

HXZ 0.58 -0.15 -0.01 0.32 0.41 -0.06 0.43
t-stat 6.10 -4.10 -0.28 3.77 7.23 -2.19
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Online Appendices

A. A production economy with uncertainty shocks

Consider an all-equity representative firm, operating in discrete time with infinite horizon. The

firm generates output according to a constant returns to scale production function: Yt = XtKt.

Yt and Xt are the firm’s output and total factor productivity at time t, respectively. Kt is the

productive capital at the beginning of time t.

The logarithmic productivity, lnXt, follows an AR(1) process, with a time-varying volatility:

lnXt+1 = ρx lnXt + η(σ2
t − σ2) + σt εx,t+1, (1)

σ2
t+1 = (1− ρσ)σ

2 + ρσσ
2
t + υ εσ,t+1, (2)

where 0 < ρx < 1 and 0 < ρσ < 1, σ2 is the long-run average volatility, υ is a constant, and

εx,t+1 and εσ,t+1 are i.i.d. N(0, 1) exogenous shocks. Eq. (2) assumes a stochastic volatility

process (see, e.g., Fernández-Villaverde and Guerrón-Quintana (2020)), which describes the macro

uncertainty shocks. Similar to Bansal and Yaron (2004), for analytical tractability, we assume

an AR(1) process for the uncertainty.26 Eq. (1) also captures the interplay between productivity

and uncertainty shocks. Economic recessions often feature high uncertainty and low productivity

contemporaneously with productivity increases in the future. This suggests that η > 0 in Eq. (1).

This is similar to the leverage effect (e.g. Black, 1976; Christie, 1982; Harvey and Shephard, 1996).

Productive capital evolves as Kt+1 = It + (1 − δ)Kt, with a quadratic capital adjustment cost

of a
2

(
It
Kt

)2
Kt, where It is investment at time t, δ is the depreciation rate, and a is a constant. The

dividend is given by Dt = Yt − It − a
2

(
It
Kt

)2
Kt.

26One unappealing feature of this assumption is the negative realizations of volatility. But, this assumption can be
easily relaxed by assuming the logarithmic volatility satisfies an AR(1) process in a numerical model or adopting an
autoregressive gamma process for volatility as in Gouriéroux and Jasiak (2006).
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For simplicity, we assume a representative household with a power utility.27 The household

consumes firm dividends to maximize her expected utility, as follows:

max
{Ct}∞t=0

E
∞∑
t=0

βtC
1−γ
t

1− γ
(3)

Ct = Yt − It −
a

2

(
It
Kt

)2

Kt, ∀t = 0, 1, 2... (4)

where γ is her relative risk aversion level and Ct is her consumption at time t.

The first-order condition gives

1 + a
It
Kt

= Et

{
β

(
Ct+1

Ct

)−γ
[
Xt+1 +

a

2

(
It+1

Kt+1

)2

+ (1− δ)

[
1 + a

(
It+1

Kt+1

)]]}
. (5)

The above equation says that the marginal costs of adding one additional unit of productive capital

equals its marginal benefits. This defines the marginal q at time t as follows:

qt ≡ 1 + a
It
Kt

. (6)

The real investment return, RI
t+1, is:

RI
t+1 =

Xt+1 +
a
2

(
It+1

Kt+1

)2
+ (1− δ)

[
1 + a

(
It+1

Kt+1

)]
1 + a It

Kt

. (7)

Cochrane (1991) and Restoy and Rockinger (1994) show that the stock return equals the real

investment return when production is constant returns to scale. Therefore, Eq. (7) also computes

the stock return Rt+1.

27Using recursive preferences might make uncertainty shocks more important for asset prices.
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We can rewrite Eq. (5) as the standard asset pricing equation:

Et[Mt+1Rt+1] = 1, (8)

with the pricing kernel Mt+1 = β
(
Ct+1

Ct

)−γ
.

For tractability, we consider a log-linearized version of the economy. Let V̂t denote logarithmic

deviations of variable V from its steady state. Given the three state variables (i.e., productivity

X̂t, productive capital K̂t, and uncertainty σ2
t ), optimal investment can be approximated as:

Ît = I0 + IxX̂t + IkK̂t + Iσσ
2
t , (9)

where I0, Ix, Ik, and Iσ are coefficients to be determined.

Log-linearizing Eq. (7) gives the expected return:

Et[R̂t+1] =

[
h(Ik − 1)δ + h− aδ

1 + aδ

]
I0 + hIσ(1− ρσ)σ

2

+

[
h

aδ
ρx + h (Ik − 1) δIx + hIxρx −

aδ

1 + aδ
Ix

]
X̂t︸ ︷︷ ︸

prductivity shock

+

[
h (1− δ + δIk)−

aδ

1 + aδ

]
(Ik − 1) K̂t︸ ︷︷ ︸

capital stock

+

{[
hρσ − aδ

1 + aδ

]
Iσ +

(
h

aδ
+ hIx

)
η

}
σ2
t︸ ︷︷ ︸

uncertainty shock

, (10)

where h = aδ
2−a

2
δ2+(a−1)δ

. That is, uncertainty shocks affect stock returns.
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Log-linearizing the resource constraint Eq. (4) gives

Ĉt =

[
g −

(
I

C
+ gaδ2

)
Ix

]
X̂t +

[
g
(
1 +

a

2
δ2
)
−
(
I

C
+ gaδ2

)
Ik

]
K̂t

−
(
I

C
+ gaδ2

)
Iσσ

2
t +

(
I

C
+ gaδ2

)
I0, (11)

where g = C+I
C(1−a

2
δ2)

. C and I are the steady state values, satisfying

I

C
=

δ

1− a
2δ

2 − δ
. (12)

Therefore, g = 1
1−a

2
δ2−δ

> 0.

Log-linearizing the first-order condition Eq. (8) gives

−γ
(
EtĈt+1 − Ĉt

)
+ EtR̂t+1 +

1

2
V art

[
−γĈt+1 + R̂t+1

]
= 0. (13)

This takes into account the impacts of uncertainty on quantities and asset prices (see, e.g., ? and

?).

Substituting Eq. (10) and (11) into (13) and matching coefficients, we can solve for I0, Ix, Ik,

and Iσ. Ik can be solved from the following quadratic equation:

0 = −γ

[
g
(
1 +

a

2
δ2
)
−
(
I

C
+ gaδ2

)
Ik

]
δ(Ik − 1)

+h(Ik − 1)(1− δ + δIk)−
aδ

1 + aδ
(Ik − 1). (14)

In fact, we can see that Ik = 1 is the solution due to the constant returns to scale technology

assumption.
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The other coefficients are:

Ix =
γg(ρx − 1)− hρx

aδ

γ
(
I
C + gaδ2

)
(ρx − 1)− γδ + hρx − aδ

1+aδ

, (15)

Iσ =
1
2

{
h
aδ + hIx − γ

[
g −

(
I
C + gaδ2

)
Ix
]}2

+
{
−γ

[
g −

(
I
c + gaδ2

)
Ix
]
+
(

h
aδ + hIx

)}
η

γδ + γ
(
I
C + gaδ2

)
(1− ρσ) +

aδ
1−aδ − hρσ

, (16)

I0 =

1

2

[
h+ γ

(
I

C
+ gaδ2

)]2
I2συ

2+{
hIσ(1− ρσ) + γ

(
I

C
+ gaδ2

)
Iσ(1− ρσ)−

(
h

aδ
+ hIx

)
η + γ

[
g −

(
I

C
+ gaδ2

)
Ix

]
η

}
σ2

h− aδ
1+aδ + γδ

.(17)

Since 0 < h < aδ
1+aδ , we see that Ix > 0. That is, investment increase with productivity shocks.

If η > γg
2 ,28 then we see that Iσ < 0. That is, investment decreases with uncertainty due to risk

aversion.

The optimal investment rate is

Ît
Kt

= Ît − K̂t = I0 + IxX̂t + Iσσ
2
t . (18)

Expected investment growth is

Et

[
ˆIt+1

Kt+1
− Ît

Kt

]
= Iσ(1− ρσ)σ

2 + (ρx − 1) IxX̂t + [(ρσ − 1) Iσ + Ixη]σ
2
t . (19)

Since Ix > 0, η > 0, Iσ < 0 and 0 < ρσ < 1, expected investment growth decreases in the

productivity shock X̂t but increases in the uncertainty shock σ2
t .

28Since productivity variance is usually an order of magnitude smaller than its level, a large η is necessary to
generate the sizeable impacts of uncertainty on productivity level in Eq. (1). As η is large, this condition is easily
satisfied.
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The stock return can be simplified to

Et[R̂t+1] =

(
h− aδ

1 + aδ

)
I0 +

[
hIσ(1− ρσ)−

(
h

aδ
+ hIx

)
η

]
σ2

+

[
h

aδ
ρx + hIxρx −

aδ

1 + aδ
Ix

]
X̂t︸ ︷︷ ︸

prductivity shock

+

{[
hρσ − aδ

1 + aδ

]
Iσ +

(
h

aδ
+ hIx

)
η

}
σ2
t︸ ︷︷ ︸

uncertainty shock

.(20)

Since 0 < h < aδ
1+aδ , 0 < ρσ < 1, Iσ < 0, Ix > 0, and η > 0, the expected stock return increases in

the uncertainty shock.

Taking Eq. (18), (19), and (20) together, we see that the investment rate and expected in-

vestment growth capture productivity shocks and uncertainty shocks and therefore they capture

expected stock returns. Also, we see that when uncertainty increases, the current investment rate

decreases while both the expected investment growth rate and the expected stock return increase.

This suggests that expected investment growth is positively related to stock returns, as suggested

in the q5-model (Hou et al., 2021).

B. TFP estimation

(1) Data

We use two main datasets to estimate the total factor productivity (TFP): Annual Compustat

and CRSP files, by matching Compustat and CRSP. The sample period is from 1966 to 2016.

Compustat items used include total assets (AT), net property, plant, and equipment (PPENT), sales

(SALE), operating income before depreciation (OIBDP), depreciation (DP), capital expenditure

(CAPX), inventory (INVT), sale of property, plant, and equipment (SPPE), depreciation, depletion

and amortization (DPACT), employees (EMP), and staff expense (XLR).

We apply several filters to select the sample firms. We include common stocks listed at

NYSE/Amex/Nasdaq. We exclude the financial firms and the utility firms (four-digit SIC be-
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tween 6000 - 6999 or 4900 - 4999). Also, firms with sales or total assets less than $1 millions,

or with negative or missing book equity, employees, capital expenditure, and depreciation are ex-

cluded. Firms with negative value-added or material costs are excluded as well. Stock price of each

firm must be greater than $5 at the end of a year. The labor expense ratio, which we will describe

below, should be between 0 and 1. Following Chen and Chen (2012), we exclude firms with asset or

sales growth rate exceeding 100% to avoid potential business discontinuities that might be caused

by mergers and acquisitions. Finally, the sample firms should report their accounting information

more than 2 years to avoid the survivorship bias.

To calculate real values, we use GDP deflator (NIPA table 1.1.9 qtr line1) and price index for

nonresidential private fixed investment(NIPA table 5.3.4 qtr line2). We obtain employees’ earnings

data from Bureau of Labor Statistics (CES0500000030). This table reports weekly earnings for

each month. We use these to compute the annual earnings.

(2) Input variables

We calculate value-added, employment, physical capital, and investment to estimate TFP.

Value-added (Yit) is Salesit−Materialsit
GDP deflator . Material cost (Materialsit) is total expenses minus

labor expense. Total expense is sales (SALE) minus operating income before depreciation and

amortization (OIBDP). Labor expense is the staff expense (XLR). However, only a small number

of firms report the staff expense. We replace the missing observations with the interaction of

industry average labor expense ratio and total expense. To be specific, we calculate the labor

expense ratio, xlrit
salesit−oibdpit

, for each firm. Next, in each year we estimate the industry average of

the labor expense ratio at 4-digit SIC code level if there are at least 3 firms. Otherwise, we estimate

the industry average of the labor expense ratio at 3-digit SIC code level. In the same manner, we

estimate the industry average of labor expense ratio at 2-digit and 1-digit SIC code level. Then,

we back out the staff expense by multiplying the industry average labor expense ratio and total
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expense. If the labor expense is still missing, we interpolate those missing observations with the

interaction of annual wage from the Bureau of Labor Statistics and the number of employees.

Capital stock (Kit) is net property, plant, and equipment divided by the capital price deflator.

We calculate the capital price deflator, following İmrohoroğlu and Tüzel (2014). First, we compute

the age of capital in each year. Age of capital stock is dpactit
dpit

. We further take a 3-year moving

average to smooth the capital age. Then, we match the current capital stock with the price index

for private fixed investment at current year minus capital age. Finally, we take one-year lag for the

capital stock to measure the available capital stock at the beginning of the period.

Investment (Iit) is capital expenditure (CAPX) minus sale of property, plant, and equipment

(SPPE) plus a change of inventory (INVT), INV Tit − INV Tit−1, deflated by current fixed invest-

ment price index. We replace missing observations of SPPE with 0.

Labor (Lit) is the number of employees.

(3) TFP estimation

We follow Olley and Pakes (1996) to estimate the total factor productivity (TFP). Olley and

Pakes (1996) provide a robust way to measure production function parameters, solving the simul-

taneity problem and selection bias. Olley and Pakes (1996) estimate the labor coefficient and the

capital coefficient separately to avoid the simultaneity problem. Also, they include the exit prob-

ability in TFP estimation process to avoid the selection bias. İmrohoroğlu and Tüzel (2014) show

how to estimate Olley and Pakes (1996) TFP using annual Compustat and share their codes.29 We

follow İmrohoroğlu and Tüzel (2014) with some modifications.

We start from the simple Cobb-Douglas production technology,

Yit = ZitL
βL
it KβK

it , (21)

29Available at http://www-bcf.usc.edu/ tuzel/TFPUpload/Programs/
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where Yit, Zit, Lit, and Kit, are value-added, productivity, labor, and capital stock of a firm i at

time t. We scale the production function by its capital stock for several reasons. First, since TFP is

the residual term, it is often highly correlated with the firm size. Second, this avoids estimating the

capital coefficient directly. Third, there is an upward bias in labor coefficient without scaling. After

being scaled by the capital stock and transformed into logarithmic values, Eq.(21) is rewritten as

Log
Yit
Kit

= βLLog
Lit

Kit
+ (βK + βL − 1)LogKit + LogZit. (22)

We define Log Yit
Kit

, Log Lit
Kit

, LogKit, and LogZit as ykit, lkit, kit, and zit. Also, denote βL and

(βK + βL − 1) as βl and βk. Rewrite Eq.(22) as

ykit = βllkit + βkkit + zit. (23)

Olley and Pakes (1996) assume a monotonic relationship between the investment and productiv-

ity (i.e., investment captures information of productivity). Hence, productivity is a function of

investment, i.e., zit = h(ikit). We assume that the function h(ikit) is 2
nd-order polynomials of ikit.

Specifically, we estimate the following cross-sectional regression at the first stage:

yit = βllkit + βkkit + β0 + βikikit + βik2ik
2
it + year ∗ ηj + ϵit, (24)

where h(ikit) = β0 + βikikit + βik2ik
2
it. We include the interaction between year and industry (ηj)

fixed effect to capture the differences of industrial technologies over time. ηj is Fama-French 10

industry classification. From this stage, we estimate the labor coefficients, β̂l.

Second, the conditional expectation of y/ki,t+1 − β̂ll/ki,t+1 − year ∗ ηj on information at t and
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survival of the firm is

Et(yki,t+1 − β̂llki,t+1 − year ∗ ηj) = βkki,t+1 + Et(zi,t+1|zi,t, survival)

= βkki,t+1 + g(zit, P̂survival,t),

(25)

where P̂survival,t is the probability of a firm survival from t to t+1. The probability is estimated

with the Probit regression of a survival indicator variable on the 2nd polynomials in investment

rate, i/k. zit is β0 + βikikit + βik2ik
2
it. The function g is the polynomials of the survival probability

(P̂survival,t) and lagged TFP (zit). At this step, we estimate the coefficient of capital, β̂k, which

gives β̂K .

From the second stage, total factor productivity (TFP) can be computed as follows:

TFPit = exp(ykit − β̂llki,t − ̂(βK + βl − 1)kit − year ∗ ηj). (26)

After transforming the exponential values, we estimate TFP growth, TFPit−TFPit−1

TFPt−1
. We use a

5-year rolling window to estimate TFP. TFP estimates are available from 1972 to 2016.

C. Cross-sectional regressions of factor models augmented with uncertainty factors

In this section, we consider three variations of uncertainty augmented factor models. That is,

prevailing factor models augmented by the total uncertainty factor, macro and micro uncertainty

factors, and the aggregate uncertainty factor.

C.1. Cross-sectional regressions of factor models augmented with total uncertainty factor

Since ∆UNCma tracks ∆UNC, we can replace ∆UNCma with ∆UNC and run the Fama-

MacBeth regressions. Panel A of Table C1 reports the results with the full-sample estimation,

which are qualitatively similar to those reported in Table 5. γ0 from the augmented FF6 and
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SY models are insignificant. Also, γUNC are significantly negative across all models and their

magnitudes are close to the average factor return. To avoid the look-ahead bias, we report Fama-

MacBeth regressions using the extending-window estimation in Panel B of Table C1. The testing

period is from July 1997 to June 2018. We find similar results in the extending-window cases. First,

γUNC is significantly negative across all augmented factor models. Second, the intercepts become

smaller or insignificant after we add ∆UNC to the prevailing factor models.

C.2. Cross-sectional regressions of factor models augmented with macro and micro uncertainty

factor

For another robustness check, we extend the prevailing factor models by adding both ∆UNCma

and ∆UNCmi, and report results in Table C2. We see that across the augmented factor models,

only γUNCma are significantly negative while γUNCmi are insignificant. The augmented FF3, FF4,

FF5, FF6, HXZ, and SY models have insignificant pricing errors in the full-sample estimation

reported in Panel A. Panel B shows the extending-window estimation results, which are similar to

those in Panel A.

C.3. Cross-sectional regressions of factor models augmented with aggregate uncertainty factors

Table C3 reports Fama-MacBeth regressions of various factor models augmented with the

mimicking aggregate uncertainty portfolio (UNCagg), using full sample. Aggregate uncertainty

(UNCagg) is the conditional standard deviation of a GARCH (1,1) on aggregate TFP. Table C3

shows that the mimicking aggregate uncertainty portfolio is negatively priced, but the augmented

models have significant intercepts. Overall, we see that the macro uncertainty factor (UNCma)

performs better than the mimicking aggregate uncertainty factor (UNCagg).

Table C4 reports Fama-MacBeth regressions of various factor models augmented with the mim-
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icking VIX portfolio (∆V IX), using full sample. Again, we see that the mimicking VIX portfolio is

negatively priced. The augmented FF6 model has an insignificant intercept but other augmented

models have significant pricing errors. Overall, we see that the macro uncertainty factor (UNCma)

performs better than the mimicking VIX factor.

D. Explaining the expected investment growth factor with total uncertainty-augmented fac-

tor models

To avoid the look-ahead bias, we use the extending-window to decompose EG into predicted

and residual components. Starting from 1985, we regress the firm-level EG against the macro

uncertainty to compute these two components over time. We sort all stocks into decile portfolios

based on either their predicted EG or residual EG. Portfolio 10 (1) has the highest (lowest) predicted

or residual EG. We compute the value-weighted portfolio returns and the alphas from various asset

pricing models. Panel A of Table D1 shows that portfolio returns increase with predicted EG.

The long-short portfolio has a significantly positive alpha from all benchmark models. But Panel

B of Table D1 shows that the residual EG doesn’t provide additional information. For example,

the long-short portfolio has much smaller alphas than those reported in Panel A and its alpha

is insignificant from SY model. Overall, we see that the pricing of EG is driven by the macro

uncertainty risk.

E. Explaining the cross-sectional dispersions of EG predictors with total uncertainty

Table E1 presents the univariate regression of the cross-sectional dispersion of each EG predictor

against the total uncertainty (UNC). EG predictors are operating cash flows (COP), Tobin’s q

(Q), and change in return on equity (dROE). We see that UNC explains most of the cross-sectional

dispersions of EG predictors.
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F. Explaining the pricing powers of three EG predictors

Table F1 compares the pricing powers of three EG predictors. We augment Hou et al. (2015)

q-factor model with each predictor of EG and run Fama-MacBeth regressions. We see that oper-

ating cash flows (COP ) and dROE are significantly positive, but Tobin’s q is insignificant. Also,

HXZ+COP has the highest R2. This is consistent with Hou et al. (2021) that future investment

growth is predicted mainly by COP .

G. Explaining the expected investment growth factor with total uncertainty-augmented fac-

tor models

Table G1 reports the regression coefficients of using ∆UNC to explain the EG factor. The full-

sample estimation results in Panel A show that ∆UNC captures the EG factor in augmented SY

model, with insignificant intercepts of 0.02% (t-statistic=0.32). ∆UNC are significantly negative

in all models.

To avoid the look-ahead bias, we presents similar regression results, using the extending-window

estimation, in Panel B. The results are similar to those reported in Panel A.

H. Comparing the q5 model with total uncertainty-augmented q-model

For the robustness check, we compare Hou et al. (2021) q5 model (HMXZ) with ∆UNC-

augmented HXZ model (HXZ+∆UNC) in Table H1. The results are similar to those using

∆UNCma in Table 5. Overall, the EG factor and ∆UNC have similar contribution in explaining

the test portfolios in the cross section.
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Table D1. Returns to portfolios sorted by the predicted and residual expected invest-
ment growth: Extending-window estimation

All stocks are sorted into 10 portfolios, based on either the predicted expected investment growth (Panel A), or
residual expected investment growth (Panel B). We decompose EG into predicted and residual expected investment
growth by regressing EG against macro uncertainty (∆UNCma) for each firm using the extending-window estimation.
The decomposition starts in 1985 and extends to 2018. We compute the value-weighted portfolio returns, and the
alphas from CAPM, Fama and French (1993) three-factor model (FF3), Carhart (1997) four-factor model (FF4),
Fama and French (2015) five-factor model (FF5), Fama and French (2018) six-factor model (FF6), Hou et al. (2015)
q-factor model (HMZ), and Stambaugh and Yuan (2017) model (SY). Newey-West t-statistics with six-month lags
are in parenthesis. 10-1 indicates the difference between Portfolio 10 (high predicted or residual expected investment
growth) and Portfolio 1 (low predicted or residual expected investment growth). All returns are multiplied by 100.
The testing period is from July 1986 to June 2018 except for Stambaugh and Yuan (2017) model. The testing period
of Stambaugh and Yuan (2017) is July 1986 to December 2016.

Panel A: Portfolios sorted by predicted EG

1 2 3 4 5 6 7 8 9 10 10-1
Raw 0.05 0.17 0.49 0.63 0.67 0.77 0.59 0.68 0.86 1.14 1.09

(0.10) (0.51) (1.94) (2.49) (2.89) (3.70) (3.05) (3.03) (3.24) (3.30) (4.03)
CAPM -1.03 -0.67 -0.19 -0.09 0.05 0.21 0.03 0.09 0.16 0.30 1.34

(-3.44) (-4.57) (-1.71) (-0.97) (0.53) (1.90) (0.32) (1.06) (1.30) (1.74) (5.27)
FF3 -0.79 -0.60 -0.15 -0.03 0.02 0.18 0.00 0.10 0.24 0.47 1.26

(-3.56) (-4.07) (-1.37) (-0.41) (0.21) (1.69) (0.00) (1.15) (2.24) (3.43) (5.58)
FF4 -0.65 -0.47 -0.11 -0.01 0.00 0.14 0.00 0.13 0.29 0.54 1.20

(-3.07) (-3.05) (-0.98) (-0.11) (-0.02) (1.31) (0.03) (1.51) (2.59) (3.88) (5.29)
FF5 -0.26 -0.43 -0.10 -0.01 -0.22 -0.05 -0.18 -0.05 0.30 0.73 0.99

(-1.15) (-3.19) (-0.82) (-0.08) (-2.67) (-0.59) (-2.05) (-0.59) (2.78) (4.92) (4.29)
FF6 -0.20 -0.36 -0.08 0.01 -0.22 -0.07 -0.17 -0.01 0.33 0.76 0.96

(-0.93) (-2.58) (-0.63) (0.08) (-2.54) (-0.71) (-1.97) (-0.08) (3.05) (5.08) (4.24)
HXZ -0.21 -0.39 -0.10 0.03 -0.18 -0.03 -0.13 0.02 0.36 0.81 1.02

(-0.80) (-2.53) (-0.77) (0.36) (-2.11) (-0.30) (-1.44) (0.25) (2.85) (5.05) (4.12)
SY -0.22 -0.22 0.02 0.08 -0.12 -0.01 -0.16 -0.03 0.23 0.77 0.99

(-0.85) (-1.44) (0.16) (0.72) (-1.23) (-0.10) (-1.79) (-0.29) (1.59) (4.51) (3.83)

Panel B: Portfolios sorted by residual EG

1 2 3 4 5 6 7 8 9 10 10-1
Raw 0.47 0.59 0.58 0.63 0.63 0.68 0.75 0.74 0.89 1.18 0.71

(1.38) (1.94) (2.21) (2.31) (2.91) (2.90) (3.32) (3.32) (4.46) (4.80) (2.91)
CAPM -0.39 -0.17 -0.09 -0.06 -0.01 0.04 0.15 0.16 0.32 0.53 0.91

(-2.34) (-1.56) (-0.92) (-0.51) (-0.08) (0.47) (1.47) (1.28) (3.33) (3.36) (3.58)
FF3 -0.28 -0.10 -0.09 -0.09 0.00 0.07 0.13 0.14 0.35 0.58 0.86

(-1.97) (-0.98) (-0.93) (-0.79) (-0.03) (0.82) (1.47) (1.21) (3.88) (4.01) (3.79)
FF4 -0.18 -0.03 -0.04 -0.08 0.03 0.05 0.10 0.13 0.28 0.49 0.67

(-1.36) (-0.22) (-0.41) (-0.70) (0.31) (0.63) (1.07) (1.17) (3.07) (3.52) (3.19)
FF5 -0.06 -0.01 -0.15 -0.15 -0.07 -0.02 -0.03 -0.08 0.18 0.45 0.51

(-0.39) (-0.12) (-1.45) (-1.26) (-0.81) (-0.20) (-0.39) (-0.81) (1.76) (3.10) (2.12)
FF6 -0.01 0.04 -0.11 -0.13 -0.04 -0.02 -0.04 -0.07 0.14 0.39 0.40

(-0.07) (0.31) (-1.06) (-1.16) (-0.46) (-0.28) (-0.50) (-0.68) (1.46) (2.93) (1.88)
HXZ 0.01 0.06 -0.08 -0.13 -0.04 0.02 -0.02 -0.02 0.22 0.52 0.51

(0.06) (0.58) (-0.69) (-1.07) (-0.44) (0.22) (-0.20) (-0.16) (1.90) (2.97) (1.98)
SY 0.05 0.10 -0.04 -0.12 -0.01 -0.04 -0.03 -0.11 0.03 0.21 0.15

(0.32) (0.84) (-0.33) (-0.95) (-0.12) (-0.49) (-0.30) (-0.95) (0.30) (1.68) (0.72)
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Table E1. Using total uncertainty to explain the cross-sectional dispersions of EG
predictors

Columns (1)-(3) report the coefficients, t-statistics (t-stat), and R2 from the time-series regression of the cross-
sectional dispersion of each EG predictor on the total uncertainty (UNC). Predictors are operating cash flows
(DISCOP ), Tobin’s q (DISQ), and change in return on equity (DISdROE), respectively. Newey-West t-statistics
with 5-year lags are used. The testing period is from 1972 to 2016.

(1) (2) (3)

DISCOP DISQ DISdROE

UNC 0.36 1.09 0.62
t-stat 4.00 2.82 5.46

R2 0.61 0.36 0.65
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Table F1. Cross-sectional regressions of EG predictors-augmented factor models

This table reports Fama-MacBeth regressions of Hou et al. (2015) q-factor model (HMZ) augmented with pricing
factors of three predictors of the expected investment growth, using the full-sample estimation. We construct the
annual pricing factors by sorting each of three predictors, following Hou et al. (2021). Three predictors are operating
cash flow (COP ), Tobin’s Q (Q), and the first-difference of return on equity (dROE). Test assets are 45 portfolios
and the tested tradable pricing factors, including 6 size and book-to-market sorted portfolios, 6 size and operating
profitability sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum sorted portfolios, 6 size
and expected investment growth sorted portfolios, 10 operating accrual sorted portfolios, and 5 Fama-French industry
portfolios. All coefficients are multiplied by 100. The t-statistics are adjusted for errors-in-variables, following Shanken
(1992). The adjusted R2 follows Jagannathan and Wang (1996). The 5th and 95th percentiles of the adjusted R2

distribution from a bootstrap simulation of 10,000 times are reported in brackets. The testing period is June 1973
to June 2018.

HXZ+COP HXZ+Q HXZ+dROE

Coeff t-stat Coeff t-stat Coeff t-stat
γ0 0.96 2.17 -0.23 -0.45 0.98 1.76

γMKT 5.98 2.29 7.42 2.81 6.23 2.36
γQME 2.83 1.46 3.14 1.62 2.76 1.43
γQIA 3.55 1.94 6.85 4.93 6.16 3.85

γQROE 4.26 2.49 5.93 3.49 6.07 3.59
γCOP 8.70 5.02

γQ -1.92 -0.72
γdROE 9.12 5.24

R2 0.69 0.64 0.59

(5th, 95th) (0.42, 0.83) (0.32, 0.83) (0.30, 0.78)

83



Table G1. Explaining EG factor with total uncertainty-augmented factor models

Panel A presents the average return and the factor loadings of EG factor from various total uncertainty (∆UNC)-
augmented factor models, using the full sample. Panel B shows similar results from the expanding-window estimation.
Factor models include the market model (CAPM), Fama and French (1993) three-factor model (FF3), Carhart
(1997) four-factor model (FF4), Fama and French (2015) five-factor model (FF5), Fama and French (2018) six-factor
model (FF6), Stambaugh and Yuan (2017) model (SY), and Hou et al. (2015) q-factor model (HXZ). All returns
are multiplied by 100. Newey-West adjusted t-statistics (t-stat) with 6-month lags are provided. R2 denotes the
explanatory power of the corresponding factor model. The testing period for Panel A is from July 1973 to June 2018.
The testing period for Panel B is from July 1997 to June 2018.

Panel A: Full-sample estimation

α
Raw 0.81
t-stat 8.77

α MKT ∆UNC R2

CAPM 0.37 -0.10 -0.63 0.61
t-stat 5.31 -4.86 -9.64

α MKT SMB HML ∆UNC R2

3FF 0.30 -0.12 0.12 -0.11 -0.76 0.65
t-stat 4.22 -6.71 3.59 -3.53 -10.11

α MKT SMB HML UMD ∆UNC R2

4FF 0.21 -0.10 0.10 -0.05 0.14 -0.72 0.73
t-stat 3.85 -7.66 4.32 -1.89 6.19 -13.15

α MKT SMB HML CMA RMW ∆UNC R2

5FF 0.22 -0.11 0.19 -0.08 -0.12 0.25 -0.77 0.72
t-stat 3.25 -6.14 5.55 -1.77 -1.61 3.8 -17.84

α MKT SMB HML CMA RMW UMD ∆UNC R2

6FF 0.15 -0.10 0.18 0.00 -0.17 0.22 0.13 -0.75 0.79
t-stat 2.90 -7.36 7.36 -0.11 -3.33 4.88 10.05 -23.97

α MKT QME QIA QROE ∆UNC R2

HXZ 0.12 -6.05 12.79 2.60 19.95 -0.65 0.77
t-stat 2.25 -4.03 6.26 0.85 11.09 -17.21

α MKT MISME MGMT PERF ∆UNC R2

SY 0.02 -0.12 0.28 -0.30 0.35 -0.90 0.87
t-stat 0.32 -9.71 9.31 -7.29 14.20 -28.65
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Panel B: Expanding-window estimation

α
Raw 0.61
t-stat 3.85

α MKT ∆UNC R2

CAPM 0.15 -0.09 -0.79 0.89
t-stat 2.53 -4.76 -25.67

α MKT SMB HML ∆UNC R2

3FF 0.11 -0.09 0.08 0.00 -0.82 0.90
t-stat 1.91 -4.75 2.43 -0.14 -28.49

α MKT SMB HML UMD ∆UNC R2

4FF 0.11 -0.09 0.07 0.00 0.01 -0.82 0.90
t-stat 1.88 -4.56 2.40 0.02 0.75 -29.79

α MKT SMB HML CMA RMW ∆UNC R2

5FF 0.10 -0.08 0.10 0.00 -0.06 0.07 -0.81 0.90
t-stat 1.74 -4.44 5.16 -0.03 -1.58 2.37 -25.67

α Mktrf SMB HML CMA RMW UMD ∆UNC R2

6FF 0.10 -0.08 0.10 0.00 -0.06 0.07 0.01 -0.81 0.90
t-stat 1.72 -4.25 5.08 0.11 -1.60 2.37 0.77 -27.69

α MKT MISME MGMT PERF ∆UNC R2

HXZ 0.11 -0.09 0.08 -0.02 0.04 -0.81 0.90
t-stat 1.86 -4.17 2.87 -0.76 1.43 -24.45

α MKT QME QIA QROE ∆UNC R2

SY 0.06 -0.08 0.09 0.02 0.02 -0.79 0.91
t-stat 1.14 -4.02 3.12 0.68 1.96 -24.78
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Table H1. Comparing the q5 model with total uncertainty-augmented q-model

Panel A reports the coefficients (Coeff) and t-statistics (t-stat) from Fama-MacBeth regressions of Hou et al. (2021)
q5 model (HMXZ) and total uncertainty-augmented Hou et al. (2015) q-model (HXZ+∆UNC), using the full sample.
Test assets are 45 portfolios and the tested pricing factors, including 6 size and book-to-market sorted portfolios,
6 size and operating profitability sorted portfolios, 6 size and investment sorted portfolios, 6 size and momentum
sorted portfolios, 6 size and expected investment growth sorted portfolios, 10 operating accrual sorted portfolios,
and 5 Fama-French industry portfolios. Panel B shows similar regressions for the expanding-window estimation. All
coefficients are multiplied by 100. The t-statistics are adjusted for errors-in-variables, following Shanken (1992). The
adjusted R2 follows Jagannathan and Wang (1996). The 5th and 95th percentiles of the adjusted R2 distribution
from a bootstrap simulation of 10,000 times are reported in brackets. The testing period for Panel A is from July
1973 to June 2018. The testing period for Panel B is from July 1997 to June 2018.

Panel A: Full-sample betas

HMXZ HXZ+∆UNC

Coeff t-stat Coeff t-stat
γ0 0.07 2.10 0.07 1.92

γMKT 0.54 2.72 0.52 2.61
γQME 0.36 2.62 0.35 2.52
γQIA 0.31 2.93 0.35 3.27

γQROE 0.33 2.40 0.39 2.82
γEG 0.79 7.70

γUNC -0.86 -7.85
R2 0.82 0.91

(5th, 95th) (0.66, 0.87) (0.80, 0.92)

Panel B: Expanding-window betas

HMXZ HXZ+∆UNC

Coeff t-stat Coeff t-stat
γ0 0.06 0.96 0.05 0.87

γMKT 0.55 1.92 0.56 1.97
γQME 0.32 1.46 0.33 1.54
γQIA 0.19 1.01 0.2 1.03

γQROE 0.14 0.53 0.14 0.57
γEG 0.61 3.32

γUNC -0.64 -3.58
R2 0.74 0.83

(5th, 95th) (0.60, 0.88) (0.72, 0.92)
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