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Abstract

We develop a statistical framework to learn the high-dimensional stochastic dis-

count factor (SDF) from a large set of characteristic-based portfolios. Specifically,

we build on the maximum-Sharpe ratio estimated and sparse regression method

proposed in Ao et al. (2019) to construct the SDF portfolio, and develop a sta-

tistical inference theory to test the SDF loadings. Applying our approach to 194

characteristic-based portfolios, we find that the SDF constructed by about 20 of

them performs well in explaining stock returns.
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1 Introduction

Constructing the stochastic discount factor (SDF) or factor models is critical in asset
pricing and factor investing. Decades of empirical studies have identified a fruitful set
of factors and factor models. This large “zoo” of factors poses challenges as well as
opportunities to better understand the compositions of the SDF. The central question
of the SDF learning is, as Cochrane (2011) points out, which characteristics provide
truly independent useful information explaining the returns, and hence contribute to the
SDF? In this paper, we attempt to address this issue by developing a statistical learning
framework to construct the SDF and explore its properties.

Learning the SDF is challenging due to the high-dimensional nature of the problem.
There are over hundreds of potential factors, while the number of monthly historical
observations are only hundreds. When the number of assets is about the same order of
magnitude or even larger than the number of periods, estimating the high-dimensional
covariance matrix is non-trivial and creates substantial statistical challenges. In addition,
getting an accurate estimation of the expected returns is difficult because we need a long
period to estimate the means but factors might have structural changes over time.

Traditionally, factors and test assets are often constructed by portfolio sorts (e.g.
based on some firm characteristics), and then factor models are tested against a set of
test assets. This approach suffers from two limitations. First, it is limited by the dimen-
sionality of characteristics and often can’t fully address the interaction among different
characteristics.1 Second, the choice of test assets is less explored, which influences the
empirical evaluation. Especially, when weak factors or even irrelevant factors which test
assets do not have strong exposure to are present, the empirical tests may be biased (Kan
and Zhang, 1999; Kleibergen, 2009; Bryzgalova, 2017; Gospodinov et al., 2017; Anatolyev
and Mikusheva, 2022; Giglio et al., 2022).2

To avoid the limitations of the above approach, in this paper, we follow the right-hand-
side approach suggested in Barillas and Shanken (2017) and Fama and French (2018).
Barillas and Shanken (2017) and Fama and French (2018) show that it is sufficient to
examine the squared Sharpe ratio (which is equivalent to the Hansen and Jagannathan
(1997) distance) for models with tradable factors, while the choice of test assets is irrel-
evant. That is, the model with “less mispricing” should have a higher squared Sharpe
ratio.3 Therefore, we can identify the SDF portfolio to be the one with the maximum

1Recently, Bryzgalova et al. (2023b) apply decision trees to build portfolios.
2For example, many macroeconomic factors appear to be weak factors and test assets may be unable

to identify risk premia of these weak factors.
3Barillas and Shanken (2018) apply this observation and suggest a Bayesian procedure which computes

the probabilities for all models created by a given set of factors. Barillas et al. (2020) apply this metric
to empirically compare several prevailing factor models.
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squared Sharpe ratio on the mean-variance efficient frontier. Such a SDF portfolio is
mean-variance efficient, which explains asset returns. This is also consistent with the no
arbitrage condition that if there exists a factor model that prices all assets, the factor
portfolios are mean-variance efficient.

Specifically, we build on a large set of potential factor portfolios in Hou et al. (2020a) to
construct the SDF portfolio. To tackle the high-dimensional SDF loading estimation prob-
lem, we apply the maximum - Sharpe ratio estimated & sparse regression (MAXSER) ap-
proach proposed by Ao et al. (2019) to select significant inputs for the SDF. MAXSER ap-
proach can achieve the mean-variance efficiency asymptotically under the high-dimensional
setting. We show that the MAXSER estimator can consistently select the factors with
nonzero weights in constructing the SDF. Our setting allows for common factors in the
characteristic-based portfolios. With the number of factors significantly reduced by the
MAXSER selection, we apply the plug-in method to estimate the optimal weights on the
selected portfolios. We show both consistency and asymptotic normality of such estimated
weights, which enable us to conduct post inference of the SDF loadings.

We apply our methodology to learning the SDF loadings on the monthly returns of
188 anomaly portfolios from Hou et al. (2020a).4 We also include the widely used Fama-
French six factors (Fama and French, 2018), so there are totally 194 factor portfolios. We
find that our proposed SDF performs well in achieving a high Sharpe ratio and explain-
ing the cross-section of expected returns of various portfolios. After applying the post
selection of the SDF loadings based on our inference theory, we find that the SDF can be
constructed by about 20 characteristic-based portfolios. This complements the finding in
Bryzgalova et al. (2023a) that a large set of factors (23 to 25 factors) is necessary to fully
capture the SDF. We find that important variables are mostly related to momentum and
earnings, including the customer momentum, the cumulative abnormal stock return, the
earnings predictability, the market portfolio, and the quarterly earnings-to-price. Except
the market factor, the Fama-French factors are not significant given the set of selected
factors in our estimated SDF.

Next, we test our estimated SDF against benchmark factor models such as CAPM,
the Fama-French three-factor model (Fama and French, 1992, hereafter, FF3), the Fama-
French five-factor model (Fama and French, 2015, hereafter, FF5), the Fama-French six-
factor model (Fama and French, 2018, hereafter, FF6), Q4/Q5 models (Hou et al., 2015,
2021), the six-factor model in Barillas and Shanken (2018, hereafter, BS6), and behavioral
models proposed in Stambaugh and Yuan (2017, hereafter, SY4) and Daniel et al. (2020,

4One might start with factors constructed from individual stocks by using firm characteristics. For
example, Kozak and Nagel (2023) show that these could span SDF if the covariance of stock returns
satisfies a specific structure. They argue that such requirement is more likely satisfied if a large number
of firm characteristics are used.
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hereafter, DHS3). We also include the SDF estimator of Kozak et al. (2020, hereafter,
KNS) as a benchmark case. The test results show that our SDF significantly outperforms
the benchmark factor models both statistically and economically. For example, our SDF
captures the 188 anomaly portfolios and other prevailing factors. Our results are robust
after taking into account the transaction costs.

Although we use anomaly portfolios to construct the SDF, it is important to note
that this is not equivalent to using the most significant anomalies. It is possible that
a particular factor has a zero alpha relative to some factor models but has a significant
loading in our SDF because it helps to reduce the overall risk and achieve a higher overall
Sharpe ratio due to the return dependence in characteristic-based portfolios. Therefore,
it is important to consider the interactions among characteristics, as emphasized in Bryz-
galova et al. (2023b). That means, to construct the SDF, purely chasing factors that have
significant alphas, as some studies do, is unnecessary.

In addition to directly using the characteristic-based portfolios, we also construct the
SDF based on the principal component (PC) space. Kozak et al. (2020) document that
the SDF is sparse in the sense that it can be spanned by a small number of principal
components in the characteristic-based portfolios. That is, a factor model with a few sta-
tistical factors using the principal components performs similarly to reduced-form models.
We estimate the top 20 PCs as in Kozak et al. (2020). First, we find that none of the 20
PCs has a statistically significant alpha relative to our SDF. Second, we further add these
20 PCs to the input set and re-estimate the SDF from totally 214 portfolios. We find that
the 20 PCs do not help to improve the SDF. In the SDF estimated with the 214 portfolios,
the 20 PCs are rarely selected and have very low weights even when selected. In addition,
when we project all characteristic-based portfolios onto the PC space and re-estimate the
SDF using the projected portfolio returns, we find that this also doesn’t improve our SDF.
These results suggest that, different from Kozak et al. (2020), the cross-section of returns
can not be adequately explained by a small number of PCs. Our results echo Bryzgalova
et al. (2023a) who find that the SDF is dense in the PC space and a characteristic-based
factor model using a few PCs is unlikely to perform well.

Our paper is closely related to the emerging literature on applying machine learning
tools to identify factors and construct factor models.5 Some papers apply machine learn-
ing technique to estimate factor loadings. For example, Kelly et al. (2019) develop an
instrument principal component analysis (PCA) method to estimate loadings of latent
factor models as linear functions of characteristics. Lettau and Pelger (2020b,a) propose

5Various machine learning approaches have been employed to predict asset returns. For example,
Freyberger et al. (2020) use the adaptive group Lasso to select characteristics that provide incremental
information for the cross-section of expected returns. Gu et al. (2020) use a variety of machine learning
techniques to predict stock returns using characteristics.
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a risk-premium PCA to estimate the SDF at the presence of weak factors. Kozak et al.
(2020) impose economically motivated prior about SDF coefficients and apply shrinkage
and selection methods to construct SDF. Gu et al. (2021) propose a nonlinear latent
conditional factor model based on asset characteristics learned with autoencoder neural
networks. Giglio et al. (2022) suggest using a supervised PCA to select test assets and
estimate risk premia for potentially weak factors. Meanwhile, some papers develop em-
pirical tests. For example, Feng et al. (2020) propose a test for the significance of new
factors under the existence of a factor model. Giglio et al. (2021) study multiple hypoth-
esis testing problems in linear asset pricing models. We contribute to the literature in
two ways. First, earlier studies mostly focus on individual factors while we consider the
mean-variance efficient SDF portfolio. Second, we establish the statistical properties of
the SDF loading estimators in the high-dimensional setting, show the consistency of our
estimators and develop a statistical inference theory of these estimators, which is lack in
the earlier studies.

Our study also relates to the empirical literature on identifying and interpreting
characteristic-based portfolios. Numerous studies examine whether these portfolios are
significant, robust, and replicable. For example, Hou et al. (2020a) investigate over hun-
dreds of anomalies and find that half of them fail to replicate with more recent data or
a different portfolio construction scheme than the original paper. The factor zoo raises
concerns about data mining, transaction costs, and replication (McLean and Pontiff, 2016;
Harvey et al., 2016; Andrews and Kasy, 2019; Jacobs and Müller, 2020; Chen, 2021; Har-
vey and Liu, 2021a,b; Jensen et al., 2023). Different from these papers, our paper uses
these portfolios to construct the pricing kernel, which may not be anomaly portfolios. In
fact, we find the most important characteristic-based portfolios in our SDF do not have
significant alphas relative to other factor models.

Last, our paper contributes to the literature of high-dimensional mean-variance effi-
cient portfolio optimization. It is well known that using sample plug-in portfolio performs
poorly in constructing mean-variance optimal portfolios when the number of assets is
large due to the sampling error in high-dimensions (see, e.g., Michaud, 1989; Britten-
Jones, 1999). Various approaches have been proposed to improve the performance of
large portfolios. One way is to adopt better mean and covariance matrix estimators,
e.g., the Black-Litterman’s approach of expected return estimation (Black and Litterman,
1991), factor-model-based covariance matrix estimators (Fan et al., 2008, 2011, 2013), and
shrinkage estimators (Ledoit and Wolf, 2017). The MAXSER proposed in Ao et al. (2019)
can simultaneously achieve the optimal Sharpe ratio and the target risk constraints. This
paper builds on Ao et al. (2019) and establishes statistical inference theory for the SDF
weights. The inference theory can be used to further reduce the number of assets in the
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final SDF portfolio.
The rest of this paper is organized as follows. We present our methodology supported

with statistical theory in Section 2. Section 3 presents main empirical results. Section 4
considers the robustness of our approach, while Section 5 further explores the economic
interpretations of our estimated SDF. Finally, we conclude in Section 6. The proofs are
collected in Appendix A and additional empirical results are presented in Appendix B.

2 Model

2.1 SDF and the mean-variance efficient portfolio

Under the beta-pricing models, factors (Rt) can be constructed using characteristic-based
stock portfolios, i.e., Rt = ZT

t−1Rs,t, where Rt is an N × 1 vector of characteristic sorted
factors, Zt−1 are Ns ×N asset characteristics, Rs,t are Ns × 1 excess stock returns. The
stochastic discount factor (SDF) in this beta-pricing model can be written as

Mt =
1− bT (Rt − E(Rt))

Rf,t

,

E(MtRt) = 0,

(2.1)

where b is the loading of the SDF on the characteristic sorted portfolio, and Rf,t is the
risk-free rate. Solving (2.1), we get

b = Σ−1µ, (2.2)

where Σ is the covariance matrix and µ is the mean return of factor returns Rt.
Note that finding the SDF loadings b is equivalent to solving the weights of the

optimal mean-variance portfolio using the characteristics based factors. Specifically, the
mean-variance optimal portfolio solves

max µTω, subject to ωTΣω ≤ σ2,

where σ is the target risk constraint.6 The optimal weight is

ω∗ =
σ√

µTΣ−1µ
Σ−1µ. (2.3)

Comparing (2.3) with (2.2), we see that the SDF loading b differs from the optimal
portfolio weights ω∗ up to a scalar, which is invariant to the composition of the SDF.

6Note that the optimization problem considers the investment on risky assets so the weights do not
sum up to one. The investment weight on the risk-free asset is 1−

∑
i wi.
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Motivated by such an observation, we will consider the SDF as a mean-variance portfolio
optimization problem.

Given the high dimension of risky assets, it is challenging to estimate SDF when
the number of characteristic-sorted portfolios, N , is large. In the next subsections, we
develop a selection approach to estimate SDF. We also explore a central limit theorem of
the estimated SDF loadings to establish the statistical inference theory.

2.2 Estimating SDF with MAXSER

Given a large number of characteristic-based portfolios, we allow some factors to be
portfolios of other characteristic-based factors, e.g., the market factor. That is, the
characteristic-based portfolios may not be orthogonal as they might share some common
factor components. Suppose that the return generating process of the characteristic-based
portfolios is as follows:

Rt = βft + Ut, (2.4)

where ft is a K × 1 vector of common factors, β is an N ×K factor loadings, and Ut is
the idiosyncratic return. We will use (ft,Rt) to construct the SDF. When the common
factor components are reasonably presented, they explain much of the variations in Rt.
Hence, it is reasonable to assume that the factor ft is likely to be included in the SDF and
the SDF loadings on the idiosyncratic component Ut is likely to be sparse after excluding
the common factor components.

Next, we follow Ao et al. (2019) and adopt the maximum-Sharpe-ratio estimated and
sparse regression (MAXSER) approach to estimate the SDF loadings. The MAXSER
approach combines mean-variance portfolio optimization with Lasso regression to find
the optimal sparse portfolio. MAXSER finds the mean-variance efficient portfolios by
maximizing the Sharpe ratio directly, instead of relying on the estimates of mean and
covariance matrix separately. Ao et al. (2019) argue that MAXSER enjoys desirable
theoretical properties in terms of portfolio risk control and expected return maximization
under the high-dimensional setting when both the number of assets and the observations
are large.

We summarize the MAXSER approach as follows. Using both ft and Rt under the
model (2.4) to construct the optimal mean-variance portfolio, we denote the optimal
weights by ω∗ = ((ω∗f )T , (ω∗R)T )T . Proposition 3 of Ao et al. (2019) shows that

ω∗f =
σ√
θall

Σ−1f µf −
σ√
θall
βTΣ−1u α,

ω∗R =
σ√
θall

Σ−1u α,
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where Σf and µf are the covariance matrix and the mean of ft; Σu =: (σu,ij)1≤i,j≤N and
α are the covariance matrix and the mean of Ut. Also, θall = µT

f Σ−1f µf +αTΣ−1u α is the
squared Sharpe ratio of the optimal portfolio investing in factors and all assets.

Similarly, the optimal portfolio invested in the idiosyncratic components U with a risk
constraint being one is

ω∗u =
1√
θu

Σ−1u α,

where θu = αTΣ−1u α is the squared Sharpe ratio of the optimal portfolio investing in
idiosyncratic components. We see that ω∗R is proportional to ω∗u. Therefore, we first
obtain the optimal weights on idiosyncratic components, ω̂∗u, using the following Lasso-
type regression

ω̂∗u = argmin
ω

1

T

T∑
t=1

(r̂u,c − ωT Ût)
2 + λT‖ω‖1, (2.5)

where ‖x‖1 :=
∑
|xi| for any vector x = (xi). In the above regression, Ût = Rt − β̂ft are

the estimated idiosyncratic returns, and β̂ are the coefficients from regressing (Rt) over
(ft):

β̂ =

(
T∑
t=1

(Rt − R̄)(ft − f̄)T

)(
T∑
t=1

(ft − f̄)(ft − f̄)T

)−1
,

where f̄ =
∑T

t=1 ft/T and R̄ =
∑T

t=1 Rt/T , assuming a sample size of T . The tuning
parameter λT is chosen by cross-validation with the criteria of minimizing the difference
between the risk computed using the validation set and the given risk constraint. The r̂u,c
is a constant defined as follows. Denote µ̂f , Σ̂f as the sample mean and sample covariance
matrix of ft, while µ̂full and Σ̂full are the sample mean and sample covariance matrix of
(ft,R

T
t )T , respectively. We define

r̂u,c =

√
1

θ̂u
+

√
θ̂u,

where
θ̂u = θ̂all − µ̂T

f Σ̂−1f µ̂f , and

θ̂all =
(T −N −K − 2)µ̂T

fullΣ̂
−1
fullµ̂full −N −K

T
.

Finally, the estimated optimal weights on all portfolios are ω̂∗ = ((ω̂∗f )T , (ω̂∗R)T )T with

ω̂∗f =
σ√
θ̂all

Σ̂−1f µ̂f −
σ√
θ̂all

β̂T ω̂∗u,

ω̂∗R = σ

√
θ̂u

θ̂all
ω̂∗u.
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Ao et al. (2019) focus on the MAXSER portfolio’s performance. In particular, they
show that the estimated portfolio achieves asymptotically the optimal Sharpe ratio under
a risk constraint (see Theorem 2 therein for more details). In this paper, we apply and
further develop their approach to estimate the SDF via finding the mean-variance efficient
portfolio. Our goal is to find the SDF loading estimators that are economically meaningful,
easy to estimate, and enjoy desirable statistical properties. In the next subsections, we
validate the consistency of variable selection and develop a statistical inference theory
about the SDF estimates.

2.3 Sign consistency of MAXSER weights

We make the following assumptions.

Assumption 1 The number of assets N and the sample size T satisfy that N, T → ∞
and N/T → ρ ∈ (0, 1).

Assumption 2 ft
i.i.d.∼ N(µf ,Σf ). Ut is independent of ft with Ut

i.i.d.∼ N(α,Σu).

Assumption 3 There exists a constant M such that

max
{
αΣ−1u α, max

1≤i≤N,1≤k≤K
|αi|, |βik|, σu,ii

}
< M.

Denote S1 = {i : ω∗u,i 6= 0, 1 ≤ i ≤ N}, qu = |S1|, Σu,11 = (Σu)S1,S1 , Σu,21 = (Σu)Sc
1,S1 ,

α1 = (αi)i∈S1 , and α2 = (αi)i∈Sc . The following notation is used thoughout the paper.
For any matrix A = (aij), its spectral norm is defined as ‖A‖ = max‖x‖≤1

√
xTAx, where

‖x‖ =
√∑

xi for any vector x = (xi); the max norm is defined as ‖A‖max = maxi,j |aij|;
and the `1 norm is defined as ‖A‖1 = maxi

∑
j |aij|.

Assumption 4 qu
√

logN/N = o(1), mini∈S1 |ω∗i | � λT
√
qu/N with λT � qu

√
logN

√
N .

Assumption 5 ‖Σu,21 + α2α
T
1 ‖max < 1− η for some constant η > 0, and ‖Σ−1u,11‖ < M

for constant M > 0.

Assumptions 1–3 are from Ao et al. (2019). The sparsity assumption, Assumption 4,
is slightly different from Ao et al. (2019). We require the number of nonzero weights to
be not too big. Moreover, the minimum nonzero weight is not too small. Assumption 5
includes the irrepresentable condition and the regularity condition on the precision matrix
that are widely imposed in the Lasso literature.
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Zhao and Yu (2006) establish the sign consistency of the estimated coefficients from
the Lasso regressions. It is important to note that our setting is essentially different from
the standard Lasso regression. The difference lies in the fact that in the standard Lasso
regression, the inference theory is obtained by conditioning on the x-variable and utilizing
the i.i.d. assumption imposed on the noise term. In our setting, our inference theory is
built upon the randomness of the variable Ût which is the x-variable. The next theorem
establishes the sign consistency of the MAXSER weights in our setting.

Theorem 1 Under Assumptions 1–5,

P
(
sign(ω̂∗R) = sign(ω∗R)

)
→ 1. (2.6)

Proof : See Appendix A.1.

2.4 Statistical inferences of SDF loadings

Inference of sparse regressions has been explored in the literature. For example, a widely
used approach is the debiased low-dimensional linear projection method developed by
Zhang and Zhang (2014) for post inference of sparse regressions. However, for the same
reason mentioned in the previous subsection, the approach is not applicable to our setting.
Another widely used statistical inference approach is to perform post inference based on
variable selection from sparse regressions. For example, in the ordinary regression setting,
Belloni et al. (2014) develop testing methods for variables estimated from ordinary least
squares (OLS) based on post-sparse regressions. In financial applications, Feng et al.
(2020) develop factor testing methods that applies OLS based on the post-LASSO model
selection. The framework of Feng et al. (2020) follows the ordinary regression setting as
they use test asset returns as responses in the regression. The inference results established
for the ordinary regression do not apply to our setting either.

In this paper, we develop an alternative approach for statistical inference of the SDF
loadings. We will use the variable selection results from the MAXSER estimator for
optimal portfolios and conduct a post plug-in estimation of the SDF loadings using Eq.
(2.2). We will then make statistical inference based on the plug-in estimator.

Define Sfull,1 = {1, ..., K} ∪ {i + K : i ∈ S1}. The set Sfull,1 includes all factors and
the variables with non-zero SDF loadings. It is straightforward to verify that

ω∗ =
(

(ω∗full,1)
T ,0T

)T
,

where ω∗full,1 is the optimal weights of length K + |S1|, which use the factors and the
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assets with nonzero weights and the same risk target, given by

ω∗full,1 =
σ√

µT
full,1Σ

−1
full,1µfull,1

Σ−1full,1µfull,1,

where µfull,1, and Σfull,1 are the mean and the covariance matrix matrix of (fTt ,R
T
S1

)T .
Note that the SDF weight b = Σ−1fullµfull is proportional to the optimal portfolio weight
ω∗full. We have b = (bT

full,1,0
T )T with bfull,1 = Σ−1full,1µfull,1.

Denote Ŝfull,1 = {1, ..., K} ∪ {i + K : (ω̂∗R)i 6= 0, 1 ≤ i ≤ N}. The sign consistency
established in Theorem 1 implies that

P (Ŝfull,1 = Sfull,1)→ 1.

Therefore, we focus on Sfull,1 and perform post inference about bfull,1. Specifically, we
compute a plug-in estimator b̂ = (b̂T

full,1,0
T )T using the assets in Ŝfull,1:

b̂full,1 = Σ̂−1full,1µ̂full,1, (2.7)

where Σ̂full,1 and µ̂full,1 are the sample covariance and the sample mean of the asset
returns in Ŝfull,1 that includes the K factors and assets with nonzero weight estimates.

We make the following assumption.

Assumption 6 ‖Σ−1full,1‖ ≤ C for some constant C > 0.

Theorem 2 gives the central limit theorem of b̂full,1 defined in Eq. (2.7).

Theorem 2 Under Assumptions 1–6, for any fixed k and any deterministic k× (qu +K)

matrix A, ‖A‖ = O(1),we have

√
nA(b̂full,1 − bfull,1)

L→ N(0,ΣA),

where ΣA = limN→∞A((µT
full,1Σ

−1
full,1µfull,1 + 1)Σ−1full,1 + Σ−1full,1µ

T
full,1µfull,1Σ

−1
full,1)A

T .

Proof : See Appendix A.2.
Theorem 2 states that the SDF estimator b̂full,1 enjoys the asymptotic normality,

which allows us to perform post inference of the SDF loadings.
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3 Empirical tests

3.1 Data

We build our work on the fruitful literature on return predictability and anomalies, i.e.,
using the characteristic-based portfolio data from Hou et al. (2020a). The data set includes
monthly returns of 188 anomaly portfolios from January 1980 to December 2021. Hou
et al. (2020a) categorize these anomalies into 6 groups, namely, frictions, intangibles,
investment, momentum, profitability, and value-growth. We also include the Fama-French
six factors (Fama and French (2018)), i.e., the market portfolio, SMB, HML, CMA, RMW
and MOM portfolios. Monthly data of these six factors are obtained from French’s data
library.7 Totally there are 194 test portfolios with 504 monthly observations.

3.2 SDF learning: Various approaches

We consider various SDF learning approaches, including MAXSER-based approaches and
others proposed in the literature.

First, we use the 194 test portfolios to learn the SDF based on the MAXSER method.
We note that there exits a factor structure among testing portfolios, as is clearly shown
in Figure 1. The market portfolio is correlated with other test portfolios with a median
magnitude of 0.15 and interquarter range of 0.07 and 0.26. For our proposed MAXSER
method, we choose the market portfolio as the base factor for the remaining factors.
Because the SDF learning is equivalent to computing the mean-variance optimal portfolio,
the proposed MAXSER approach developed in Section 2.2 can consistently select the
variables from a large number of candidate factors to construct the SDF, as shown in
Theorem 1. The portfolio is estimated every year using a rolling window of the past 20
years, that is T = 240. The target risk σ is set to be the market risk during the training
period. The out-of-sample period is between 2000 and 2021. We denote the portfolio by
MAXSER.

7https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 1: Scree plot of PCA over 194 test portfolios.

Because many anomaly portfolios are highly co-linear, to facilitate the learning, in
each training period, we pre-screen the portfolios and exclude the ones that have high
multi-colinearity with other portfolios. Specifically, we sequentially remove portfolios,
one at a time, that has a variance inflation factor (VIF) higher than 10 and is the highest
among all remaining portfolios. After the pre-screening, the VIFs of all portfolios in the
training set are lower than 10.

Second, the sparsity of the estimated parameters from the Lasso regression depends
on the tuning parameter λT . In a finite sample, it is well known that Lasso estimation
tends to overselect non-signals with a tuning parameter λ chosen from cross-validation
using criteria to achieve prediction accuracy (see, e.g., Leng et al. (2006)). In addition, for
the model selection purpose, Leng et al. (2006) suggest using statistical tests to perform
post variable selection. This motivates us to do a post screening based on the SDF weight
inference theory established in Section 2.4. We perform a backward variable selection
procedure as follows. Set M0 to be the set of factors selected by MAXSER. For j = 0, ...,
within the active set Mj, if |Mj| > Ns for a pre-specified size Ns, we perform statistical
inference on each variable in Mj and get the p-values as

p
(Mj)
i = 2

(
1− F

(
|̂b(Mj)

i |
ŝd(̂b

(Mj)
i )

))
,

where F (·) is the cumulative distribution function of a standard normal distribution, b̂(Mj)
i

is the plugin loading estimator of the ith variable from (2.7) for i ∈ Mj, and ŝd(̂b
(Mj)
i )

is the standard deviation estimator from Theorem 2. We then remove one variable from
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Mj with the highest p-value and get Mj+1. This inference process is valid because we
show that the post-MAXSER plugin SDF estimator is asymptotically jointly normal in
Theorem 2. We continue this process until |Mk| ≤ Ns for some k. Finally, the resulting
SDF portfolio is estimated using the plug-in method based on the resulting post-selected
set with at most Ns selected variables for a pre-specified Ns. We denote this post-screened
portfolio as MAXSER-S(Ns). We consider Ns = 5, 10, 20, 30, and 40.

Third, we compare our SDF portfolio with the shrinkage SDF estimator in Kozak
et al. (2020), denoted by KNS. Specifically, KNS considers the SDF loading estimates
that solve the following problem:

b̂KNS = argmin
b

(µ̂− Σ̂b)T Σ̂−1(µ̂− Σ̂b) + γ1

N∑
i=1

|bi|+ γ2b
Tb,

where µ̂ and Σ̂ are sample mean and sample covariance matrix of the training data, γ1
and γ2 are tuning parameters. Following Kozak et al. (2020), the tuning parameters are
chosen by cross-validation with the criteria of maximizing the out-of-sample (oos) R2:

R2
oos = 1− (µ̂2 − Σ̂2b)T (µ̂2 − Σ̂2b)T

µ̂T
2 µ̂2

,

where µ̂2, and Σ̂2 are the withheld sample in cross-validation. The weight b̂KNS is then
normalized to make the portfolio risk the same as the target risk.

Fourth, Kozak et al. (2020) find that the SDF can be formed by a few principal
components (PC) in characteristic-based portfolios. In order to verify whether the PCs
are useful in constructing the SDF, we enlarge the pool of characteristic-based portfolios
with their top 20 PCs and estimate the SDF using our proposed approach. Specifically, we
use the first 20 years of training period to perform PCA on the 193 portfolios (except the
market portfolio) and obtain the principal eigenvectors. We then use the eigenvectors to
perform orthogonal transformation and project all returns onto the PC space. Based on
the enlarged pool of variables with top 20 PCs, we use the proposed MAXSER approach
to estimate SDF loadings. We denote this estimated portfolio as MAXSER(+20PCs).
We also consider investing solely on the 20 PCs and construct a plugin estimator, and
a plugin estimator that invests in the 20 PCs and the market portfolio. Denote these
portfolios by 20PCs and Mkt+20PCs, respectively.

Last, we also include the following benchmark portfolios based on various factor models
for comparison.

• CAPM: using the market portfolio.

• FF3/FF5/FF6: constructing a plug-in optimal portfolio using Mkt-Rf, SMB and

14



HML factors from the Fama-French three-factor model (Fama and French (1992)),
the Fama-French five-factor model with CMA and RMW portfolios (Fama and
French (2015)), and further including MOM for the Fama-French six-factor model
(Fama and French (2018)).

• Q4/Q5: Constructing a plug-in optimal portfolio using Mkt-Rf, R_ME, R_IA and
R_ROE factors from the Q4 factor model (Hou et al. (2015)) and additional R_EG
factor for the Q5 factor model (Hou et al. (2021))8.

• BS6: Constructing a plug-in optimal portfolio using Mkt-Rf, SMB, IA, ROE, MOM,
HML(m) factors from Barillas and Shanken (2018)9.

• SY4: Constructing a plug-in optimal using Mkt-Rf, SMB, PERF and MGMT factors
from Stambaugh and Yuan (2017)10.

• DHS3: Constructing a plug-in optimal using Mkt-Rf, PEAD and FIN factors from
Daniel et al. (2020)11.

3.3 Performance of SDF portfolios

We summarize the out-of-sample performance of the SDF portfolios computed from our
proposed approach and other benchmark models in Table 1. We report the monthly mean,
standard deviation, Sharp ratio, maximum drawdown, together with different monthly
distribution percentiles. In addition, we follow Memmel (2003) and report the p-value of
the test for the difference in Sharpe ratios:

H0 : SRMAXSER−S(20) ≤ SR0 vs. H1 : SRMAXSER−S(20) > SR0, (3.1)

where SRMAXSER−S(20) is the Sharpe ratio of MAXSER-S(20) and SR0 denotes the Sharpe
ratio of another approach. The cumulative returns of the mean-variance optimal portfolios
are plotted in Figure 2.

Table 1 summarizes the out-of-sample performances of the SDF portfolios (the mean-
variance optimal portfolios). We see from Panel A of Table 1 that the MAXSER portfolio
without post-screening achieves a monthly Sharpe ratio of 0.46, which is the highest
among all approaches considered. Among the MAXSER portfolios with post screening,
we see that as the number of assets included in the SDF portfolio increases from 5 to 20,
the post-screened SDF portfolios’ monthly Sharpe ratio increases from 0.29 to 0.42. When

8Monthly data of the q-factors are from https://global-q.org/factors.html.
9HML(m) data are from https://pages.stern.nyu.edu/~afrazzin/data_library.htm.

10Monthly data of SY4 factors are from https://finance.wharton.upenn.edu/~stambaug/.
11Monthly data of DHS factors are from https://sites.google.com/view/linsunhome.
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the number of assets included into the SDF portfolio grows to be greater than 20, its per-
formance deteriorates. Compared with the MAXSER portfolio without post-screening,
the MAXSER-S(20) successfully reduce the number of assets used from about 50 to 20
while achieving a good performance, i.e., its Sharpe ratio is statistically indifferent to the
case without post screening (MAXSER). The results demonstrate the advantage of uti-
lizing the statistical inference theory for the SDF loadings established in Theorem 2. The
formal statistical tests show that the difference in Sharpe ratios from various MAXSER-
based portfolios is mostly statistically insignificant, except MAXSER-S(5) which has a
low Sharpe ratio. For example, MAXSER and MAXSER-S(20) is not statistically signif-
icant. Therefore, balancing between the performance and the number of variables used,
we will focus on the MAXSER-S(20), which is our main SDF later.

Panel B of Table 1 shows that the MAXSER-S(20) significantly outperforms most of
the benchmark cases, except 20 PCs, Mkt+20PCs, Q5, and DHS3. For example, although
KNS includes about 50 variables on average in the optimal portfolios, it has a lower Sharpe
ratio of 0.27. Among all the benchmark portfolios in Panel B, the Q5 portfolio has the
highest monthly Sharpe Ratio of 0.36, which is still smaller than that of MAXSER-S(20).

Turning to the performance of portfolios using PCs in characteristic-based portfo-
lios, we see that including PCs does not improve the performance of the SDF portfolio.
The Sharpe ratios of the portfolios that invest solely on 20 PCs and the market with
20 PCs (Mkt+20PCs), and the MAXSER portfolio with an enlarged pool includings
PCs (MAXSER(+20PCs)) are smaller than that of MAXSER-S(20), which invests in
characteristic-based portfolios directly.
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Figure 2: Cumulative dollar returns of the SDF portfolios. This figure plots the
cumulative returns of various SDF portfolios from 2000 to 2021, starting with $1. We
include the SDF portfolios constructed from the MAXSER-S(20), CAPM, FF6, Q5, BS6,
SY4, DHS3, and KNS. The portfolio risk is set to be the market risk.
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Table 2: The number of significant alphas from testing 188 anomalies against

various SDFs. We examine the explanatory power of various SDFs over 188 anomalies.
This table summarizes the total number of significant alphas and the number of significant
alphas in each characteristic group. The number in parenthesis is the total number of
portfolios in each anomaly group. The number of significant alphas under the threshold
t > 1.96 or t > 3 is reported. The evaluation period is between 2000 and 2021.

All (188) frictions (10) intangibles (30) investment (29)
threshold of t 1.96 3 1.96 3 1.96 3 1.96 3

MAXSER-S(20) 7 1 0 0 1 1 2 0
20PCs 9 1 0 0 4 0 1 0

Mkt+20PCs 10 2 0 0 5 1 1 0
KNS 13 1 0 0 6 1 1 0
CAPM 53 5 0 0 15 1 5 1
FF3 75 49 4 3 11 9 6 3
FF5 38 16 0 0 11 4 5 1
FF6 37 17 0 0 11 7 5 1
Q4 41 15 1 0 13 4 6 0
Q5 15 2 1 0 7 2 0 0
BS6 44 21 0 0 13 6 6 1
SY4 31 3 0 0 4 1 0 0
DHS3 34 7 1 0 15 3 3 1

momentum (41) profitability (46) value-growth (32)
threshold of t 1.96 3 1.96 3 1.96 3

MAXSER-S(20) 0 0 4 0 0 0
20PCs 0 0 4 1 0 0

Mkt+20PCs 0 0 4 1 0 0
KNS 0 0 3 0 3 0
CAPM 5 0 24 4 4 1
FF3 13 4 37 30 4 0
FF5 4 0 17 11 1 0
FF6 4 0 16 9 1 0
Q4 3 0 17 11 1 0
Q5 1 0 5 0 1 0
BS6 7 0 16 14 2 0
SY4 10 0 8 1 9 1
DHS3 0 0 14 3 1 0

Next, we performs asset pricing tests in Table 2 to examine the pricing power of various
SDFs. Specifically, we regress the 188 anomaly portfolios against various SDFs to examine
whether the alpha is significant. Table 2 presents the number of significant alphas. We see
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that the number of significant alphas is the lowest under the proposed MAXSER-S(20).
There are only 7 anomalies with significant alphas under MAXSER-S(20). On the other
hand, all other benchmark portfolios have more rejections. The portfolio that has the
second lowest number of rejections is the plugin portfolio on the 20 PCs and the portfolio
investing in market and the 20 PCs, which have 9 and 10 rejections, respectively. The
KNS portfolio has 13 rejections, while Q5 has 15 rejections. In particular, KNS and Q5
do not perform well in the intangibles group where there are 6 and 7 rejections out of 30
portfolios, respectively, for a threshold t = 1.96.

Furthermore, we directly examine the explanatory power of the benchmark models
over the SDF portfolio constructed from MAXSER-S(20). Specifically, we regress the out-
of-sample return of SDF portfolio from MAXSER-S(20) against the benchmark models.
Table 3 presents the alpha and its t-statistic from the regressions.

Table 3: Testing the MAXSER-S(20) SDF against other benchmark models.

This table reports the regression results of the SDF portfolio from MAXSER-S(20) against
other benchmark models, using monthly returns from 2000 to 2021. Alpha in percentage
and its corresponding t-statistic are reported.

Alpha (%) t-statistic
CAPM 2.33 6.52
FF3 2.28 6.46
FF5 1.67 4.74
FF6 1.60 4.78
Q4 1.62 4.97
Q5 1.26 3.82
BS6 1.69 5.30
SY4 1.33 3.57
DHS3 1.54 4.60
KNS 1.35 5.01

We see from Table 3 that all benchmark models fail to explain our estimated MAXSER-
S(20) SDF portfolio; the alpha of the estimated MAXSER-S(20) SDF is both economically
large and statistically significant under all benchmark models. Table 3 shows that the
monthly alphas are all greater than 1% with a t-statistic higher than 3.5 across all models.
For example, the CAPM alpha is 2.33% per month and statistically significant (t-statistic
= 6.52). These results suggest that the benchmark models can not capture the expected
returns of our MAXSER-S(20) portfolio.

Finally, we switch the roles between benchmark models and our estimated SDF and
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examine whether our MAXSER-S(20) SDF is able to explain the prevailing pricing factors.
Specifically, we regress various pricing factors against the MAXSER-S(20) SDF. Table 4
reports the alpha and its t-statistic from regressions.

Table 4: Testing prevailing pricing factors with the MAXSER-S(20) SDF. This
table reports the regression results of various pricing factors against the MAXSER-S(20)
SDF, using monthly returns from 2000 to 2021. Alpha in percentage and its corresponding
t-statistic are reported.

Factor Alpha (%) t-statistic
Mkt-RF 0.35 1.17
SMB 0.22 1.07
HML -0.10 -0.48
RMW 0.21 1.06
CMA 0.08 0.63
MOM -0.32 -0.93
R_ME 0.22 1.01
R_IA -0.04 -0.31

R_ROE 0.01 0.03
R_EG 0.30 1.87
HmLm 0.31 1.11
MGMT 0.13 0.58
PERF 0.20 0.54
PEAD 0.18 1.23
FIN 0.07 0.25
KNS -0.08 -0.34

We see from Table 4 that all alphas are insignificant at the t-statistic threshold level of
1.96. The highest t-statistic from the prevailing factors is the expected investment growth
factor (R_EG) from the Q5 model, which is 1.87. These results suggest that our SDF
well captures the prevailing pricing factors.

4 Robustness

4.1 Different numbers of assets: MAXSER-S(20) vs. MAXSER-

S(10)

Table 1 shows that MAXSER-S(20) outperforms MAXSER-S(10) in terms of out-of-
sample Sharpe ratio. However, the difference is not statistically significant. Therefore, one
might wonder if we could reduce the number of inputs to 10. In this subsection, we further
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compare the performances of the SDF estimated with 20 post-selected assets (MAXSER-
S(20)) and 10 post-selected assets (MAXSER-S(10)). We perform empirical tests with
the MAXSER-S(10), which are similar to those with the MAXSER-S(20) SDF. The re-
sults are presented in Appendix B. To summarize, we find that although MAXSER-S(10)
exhibits good explanatory power for anomaly portfolios and prevailing factors, its empiri-
cal performances are worse than that of the MAXSER-S(20) SDF. When testing with the
188 anomaly portfolios, MAXSER-S(10) fails 13 cases using a t-statistic threshold of 1.96,
while MAXSER-S(20) only fails 7 cases. When testing with the prevailing pricing factors,
MAXSER-S(10) is less powerful. For example, the expected investment growth factor is
significant at a t-statistic threshold of 1.96. Therefore, we choose MAXSER-S(20) over
MAXSER-S(10) as our estimator of SDF.

4.2 Impacts of transaction costs

Transaction costs affect portfolio performances. In particular, MAXSER adopts Lasso,
which helps screen out useless assets by imposing zeros weights, but this could lead to
higher turnover and decrease the Sharpe ratio after transaction costs. In this section, we
evaluate the performance of our SDF portfolio under transaction costs. We find that the
portfolio has a monthly turnover of 80.7% and the absolute monthly weight exposure is
7.9. Hence our SDF portfolio turnover per dollar exposure is 10.22%. Kan et al. (2022)
suggests using 20 bps per dollar of transaction when evaluating the post-transaction cost
performance of investment in anomaly portfolios. Following Kan et al. (2022), we check
the performance of the SDF portfolio after deducting the transaction costs, assuming a
cost of 20 bps per dollar of transaction. In addition, we also check the results assuming
a higher cost of 40 bps per dollar of transaction. The performance of our SDF estimator
after adjusting for the transaction costs is summarized in Table 5. The cumulative returns
of the SDF portfolio after transaction costs are plotted in Figure 3.

Table 5: Performance of the MAXSER-S(20) SDF after adjusting for trans-

action costs. The transaction cost is assumed to be 20 bps (40 bps) per dollar of
transaction. The portfolios are rebalanced every month from 2000 to 2021. The summary
statistics include the monthly mean return (Mean), standard deviation (SD), Sharpe ra-
tio (SR), and the maximum drawdown (MDD) of the SDF portfolio. All are reported in
percentage except the Sharpe ratio.

transaction cost Mean SD SR MDD
20 bps 2.27 5.77 0.39 24.96
40 bps 2.10 5.77 0.36 26.56
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We see from Table 5 that, because the turnover is low relative to the weights exposure,
the portfolio maintains a high Sharpe ratio after adjusting for the transaction costs. For
example, the Sharpe ratio is 0.39 after removing 20 bps transaction cost per dollar, and
the Sharpe ratio is 0.36 when the cost is 40 bps/dollar. Similarly, Figure 3 shows that for
$1 initial investment in 2000, at the end of 2021, the cumulative return is $375.13 when
there is no transaction costs, while it is $244.58 ($159.00) after adjusting for a transaction
cost of 20 bps (40 bps) per dollar.
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Figure 3: Cumulative dollar returns of the MAXSER-S(20) SDF portfolio after

adjusting for transaction costs. The initial investment is $1 in 2000. Transaction
costs are assumed to be 20 bps or 40 bps between 2000 and 2021. The portfolios are
rebalanced every month.

Next, we repeat Table 3, adjusting for the transaction cost. That is, we regress the
MAXSER-S(20) SDF portfolio against various factor models in Table 6. We see that
again, our MAXSER-S(20) SDF portfolio has a statistically significant alpha against
other models.
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Table 6: Testing the MAXSER-S(20) SDF portfolio against various factor

models. This table presents the regression results of the MAXSER-S(20) SDF portfolio
against various factor models, using the monthly returns from 2000 to 2021. The trans-
action costs are assumed to be 20 bps or 40 bps per dollar of transaction. The portfolios
are rebalanced every month. We report the alpha in percentage and t-statistic.

Transaction cost 20 bps 40 bps
Model Alpha (%) t-statistic Alpha (%) t-statistic

CAPM 2.16 6.08 2.00 5.61
FF3 2.12 6.01 1.96 5.55
FF5 1.52 4.29 1.35 3.82
FF6 1.44 4.30 1.28 3.81
Q5 1.09 3.33 0.93 2.83
Q4 1.46 4.49 1.30 3.99
BS6 1.53 4.81 1.38 4.31
SY4 1.18 3.15 1.02 2.73
DHS3 1.38 4.12 1.21 3.63

Last, we repeat Table 4 to take into account of transaction costs. We regress various
pricing factors against our SDF after adjusting for the transaction costs. For the variables
from the benchmark models, we use the original data without removing the transaction
cost. The results are summarized in Table 7. Again, we see that most pricing factors from
benchmark models still do not have statistically significant alpha when regressing against
our SDF after accounting for moderate level of transaction costs. The only exception is
the expected investment growth factor (REG), which has a statistically significant alpha
when the transaction cost is 40 bps per dollar.
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Table 7: Testing the prevailing pricing factors against the MAXSER-S(20) SDF,

adjusting for transaction costs. This table reports the regression results of various
pricing factors against the MAXSER-S(20) SDF after adjusting for the transaction costs,
using the monthly returns from 2000 to 2021. The transaction cost is assumed to be 20
bps or 40 bps per dollar of transaction. The portfolio is rebalanced every month. The
pricing factors from various benchmark models are the original data without removing
the transaction costs. Alpha in percentage and its t-statistic are reported.

Transaction cost 20 bps 40 bps
Factor Alpha (%) t-statistic Alpha (%) t-statistic

Mkt-RF 0.37 1.24 0.39 1.31
SMB 0.23 1.12 0.24 1.17
HML -0.08 -0.37 -0.05 -0.25
RMW 0.22 1.15 0.24 1.25
CMA 0.10 0.76 0.12 0.89
MOM -0.29 -0.85 -0.26 -0.76
R_ME 0.23 1.08 0.24 1.16
R_IA -0.02 -0.17 -0.00 -0.02

R_ROE 0.03 0.13 0.05 0.24
R_EG 0.31 1.95 0.32 2.04
HmLm 0.32 1.14 0.32 1.17
MGMT 0.16 0.71 0.19 0.84
PERF 0.23 0.62 0.26 0.72
PEAD 0.18 1.29 0.19 1.37
FIN 0.11 0.36 0.14 0.48

5 Investigating the MAXSER-S(20) SDF

5.1 Sources of the MAXSER-S(20) SDF

Previous results demonstrate the superior performance of MAXSER-S(20) SDF. As we
selected 20 out of 194 input portfolios, one might wonder what input portfolios are im-
portant. Note that we estimate the SDF portfolio every year between 2000 and 2021 with
a rolling window of 20 years. Therefore, there are 22 different trained portfolios. We
collect the variables that have ever included in the estimated portfolios for at least 20%
of the times, i.e., at least 5 out of 22 years. We plot the bar chart of the selected variable
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frequencies in Figure 4.
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Figure 4: Frequencies of variables included in the MAXSER-S(20) SDF. We
report the inclusion frequency of variables in the MAXSER-S(20) SDF from all training
periods with an inclusion frequency higher than 20%.

We see from Figure 4 that 28 variables are frequently selected in the MAXSER-S(20)
SDF, with an inclusion frequency higher than 20%. Important variables are usually related
to momentum and earnings. For example, the most frequently selected variables (being
selected for over 90% of the times) are the customer momentum (cm_1), the cumulative
abnormal stock return (abr_1), the earnings predictability (eprd), the market portfolio
(Mkt-RF), the quarterly earnings-to-price (epq_1), and the average returns across 120
months (r10a). The variables which are included for 50%–90% of the times are the
quarterly fundamental score (fq_1), the six-month residual momentum (resd6_6), the
average returns across 60 months (r5a), the quarterly R&D expense-to-market (rdmq_1),
the dividend yield (dp), and the average returns across 240 months (r20a). See more
details about the construction of these characteristic-based portfolios in Hou et al. (2020b).
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It is interesting to note that the Fama-French factors are not in the list of frequently
selected variables in the MAXSER-S(20) SDF, except the market portfolio.

In Table 8, we further provide some summary statistics of the most frequently selected
variables in the MAXSER-S(20) SDF. We report the t-statistics of alphas of these variables
when regressing against various factor models. We see from Table 8 that most of these
frequently selected variables do not have statistically significant alphas under various fac-
tor models. Taking the CAPM as an example, only 7 out of 28 variables have a significant
alpha. These variables are instrumental in our estimated MAXSER-S(20) SDF portfolio
as they help to reduce the portfolio risk and hence improve the overall performance of
the portfolio. The results demonstrate the advantage of our approach to constructing the
SDF. Instead of merely selecting variables which have significant alphas under various
models (e.g., strong anomalies), our approach accounts for the cross-sectional dependence
in asset returns and is able to select important variables which contribute to the Sharpe
ratio of the SDF portfolio. Our findings are in line with Bryzgalova et al. (2023b), who
also emphasize the importance of considering the characteristic interactions.

Finally, to capture the economics meaning, we summarize the inclusion frequencies
of the variables at the group-level. Specifically, in each training period, we compute the
total number of variables from each anomaly group which are used in constructing the
MAXSER-S(20) SDF and then report the average number from the total 22 years in
Figure 5.

We see from Figure 5 that the intangible group occurs most frequently in the MAXSER-
S(20) SDF. On average, 7 out of 30 variables from the intangible group are selected. The
second important group is momentum. On average, 4 out of 41 momentum variables are
significant in the SDF. The investment group, value-growth group and the profitability
group each has on average 2 significant variables in the SDF, and the frictions group has
one variable on average in the SDF. The market portfolio is selected for 95% of the time,
while the SMB, RMW and HML portfolio occurs only 14%, 5% and 5% of the times,
respectively. Also, the CMA and MOM in the Fama-French six-factor model are not
included in the MAXSER-S(20) SDF.
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5.2 Nonsparsity in PCs of characteristic-based portfolios

Kozak et al. (2020) document that the SDF is sparse in the sense that it can be spanned
by a small number of principal components in the characteristic portfolios. To examine
the sparsity of the SDF, we first follow Kozak et al. (2020) to construct 20 PCs from
the 193 characteristic portfolios (the market portfolio is excluded). Then we combine
these 20 PCs with the existing 193 portfolio as the new input set. Last, we perform
MAXSER to construct the SDF, denoted as MAXSER(+20PCs). From Table 1, we first
see that the plugin portfolio using 20 PCs underperforms MAXSER-S(20) SDF port-
folio. Second, we see that the SDF portfolio constructed from the enlarged input set
does not improve over the SDF constructed by 194 characteristic-based portfolios. The
MAXSER(+20PCs) SDF portfolio has a monthly Sharpe ratio of 0.41, which is lower
than that of the MAXSER-S(20) portfolio constructed by the 194 portfolios (0.42). We
find that the number of variables included in the MAXSER(+20PCs) SDF is 40–50, sim-
ilar to the case when constructing the SDF without PCs. In addition, the 20 PCs are
rarely included in the MAXSER(+20PCs) SDF portfolio. Only two PCs have ever ap-
pear in the MAXSER(+20PCs) SDF while none of them has an inclusion frequency higher
than 10%. This suggests that the SDF is dense in the sense that it still largely uses the
characteristic-based portfolios instead of PCs. Moreover, when evaluating the significance
of the 20 PCs against our estimated MAXSER-S(20) SDF, we find that none of the PCs
has a statistically significant alpha. This suggests that the 20 PCs are less important as
our MAXSER-S(20) SDF fully captures the returns of the 20 PCs.

Next, we perform another test to directly distinguish PCs from our characteristic-based
SDF. We project all characteristic-based portfolios onto the PC space (e.g., 20 PCs and
the market portfolio) and then construct the SDF using PC-based portfolio returns. We
find that, again, the estimated SDF is not sparse. The number of variables estimated with
MAXSER is about 20–30. In addition, the monthly Sharpe ratio of the estimated portfolio
is 0.35, which is lower than the MAXSER-S(20) SDF portfolio constructed directly from
the characteristic-based portfolios. This further suggests that the SDF is not sparse in
the PC space of characteristic-based portfolios.

Overall, these results above suggest that, using PCs of characteristic-based portfolios
do not have incremental contribution to constructing the SDF. Different from Kozak et al.
(2020), we find that the cross-section of characteristic-based portfolio returns is unlikely
to be sparse in the sense that they can not be adequately explained by a small number
of PCs. Instead, we find that using about 20 characteristic-based portfolios performs well
in constructing the SDF.
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Figure 5: Average number of variables from each characteristic group included
in the MAXSER-S(20) SDF. This barchart plots the average number of variables from
each characteristic group which are included in the MAXSER-S(20) SDF. The number in
parenthesis is the total number of variables in a characteristic group.
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6 Conclusions

We develop a statistical framework to estimate the high-dimensional SDF loadings. We
propose to estimate the loadings with the MAXSER estimator, which use a Lasso-type
regression with the estimated maximized Sharpe ratio as the response. We show that
our proposed approach can consistently select the factors with non-zero weights in con-
structing the SDF portfolio. We further develop a statistical inference theory for the SDF
loading based on the asymptotic normality of the plug-in estimator from consistently
post-selected variables. Our empirical tests show that the SDF can be formed by approx-
imately 20 characteristic-based portfolios, which delivers a high monthly Sharpe ratio of
0.42. In addition, the SDF is not sparse in the PC space because it can not be spanned
by a small number of principal components.
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Appendix A Proofs

A.1 Proof of Theorem 1

Suppose that without lost of generality, S1 = {1, ..., qu}. Denote by US1 , the first qu rows,
and USc

1
the remaining rows of U = (U1, ...,UT ) =: (Uit). Denote by ÛS1 , the first qu

rows, and ÛSc
1
the remaining rows of Û = (Û1, ..., ÛT ) =: (Ûit). Because ω̂∗R and ω∗R are

proportional to ω̂∗u and ω∗u, respectively. To show (2.6), it is equivalent to show

P
(
sign(ω̂∗u) = sign(ω∗u)

)
→ 1.

By Proposition 1 of Zhao and Yu (2006),

P
(
sign(ω̂∗u) = sign(ω∗u)

)
≥ P

(
An ∩Bn

)
, (A.1)

where

An =

{∣∣(C−111 W1)i
∣∣ < √T(|(ω∗u)i| −

λT
2T

∣∣(C−111 sign(ω∗u)
)
i

∣∣), for all i = 1, ..., qu

}
,

Bn =

{∣∣(C21C
−1
11 W1 −W2)i

∣∣ < λT

2
√
T
η, for all i = 1, ..., N − qu + 1

}
,

and recall that r̂u,c = 1/

√
θ̂u +

√
θ̂u, η is defined in Assumption 5, and

C11 =
1

T
ÛS1Û

T
S1
, C21 =

1

T
ÛSc

1
ÛT

S1
,

W1 =

√
1

T
ÛS1

(
r̂u,c1− ÛTω∗u

)
, W2 =

√
1

T
ÛSc

1

(
r̂u,c1− ÛTω∗u

)
.

Define an event G, for some C > 0,

G =
{
‖(W T

1 ,W
T
2 )‖max < C

√
logN

}
⋂{

‖C11 −Σu,11 −α1α
T
1 ‖max < C

√
logN

T

}
⋂{

‖C21 −Σu,21 −α2α
T
1 ‖max < C

√
logN

T

}
.

We will show that as N, T →∞,
P (G)→ 1. (A.2)

About An, under Assumptions 1 and 4, we have q2u logN/T → 0, and under event G,
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‖C11−Σu,11−α1α
T
1 ‖ = O(qu

√
logN/T ) = o(1). By Assumption 5 that ‖Σ−1u,11‖ = O(1),

and Weyl’s theorem, under event G, for all large T ,

‖C−111 ‖ < C. (A.3)

Therefore,
‖C−111 W1‖max ≤ C

√
qu(logN). (A.4)

Moreover, by (A.3),∥∥∥∥∥λT2T
C−111 sign

(
(ω∗u)S1

)∥∥∥∥∥
max

≤

∥∥∥∥∥λT2T
C−111

∥∥∥∥∥
1

≤ C
λT
√
qu

T
. (A.5)

By Assumption 4 that min1≤i≤qu |ωi| � λT
√
qu/N and λT � qu

√
(logN)N , (A.2), (A.4)

and (A.5), we get that
P (Ac

n) = o(1). (A.6)

About Bn, by Assumption 5, under event G, for all large N and T , we have

‖C21‖max < C.

Therefore,
‖C21C

−1
11 W1‖max ≤‖C21‖max

∑
i≤qu

|(C−111 W1)i|

≤√qu‖C21‖max · ‖C−111 W1‖

≤qu‖C21‖max · ‖C−111 ‖ · ‖W1‖max

=O(qu
√

logN),

where the second line holds by the Cauchy-Schwarz inequality. Therefore, by Assump-
tion 4 that λT � qu

√
(logN)N , we have

P (Bc
n) = o(1). (A.7)

Combining (A.1), (A.2), (A.6) and (A.7) yields

P
(
sign(ω̂u) = sign(ω∗u)

)
≥ 1− P (Ac

n)− P (Bc
n) = 1− o(1).

The desired bound (2.6) follows.
It remains to show (A.2). Define ru,c = 1/

√
θu +

√
θu, Û = Û1/T , U = U1/T , and
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W = (W T
1 ,W

T
2 )T . We have

W =(r̂u,c − ru,c)
√
T Û

+ ru,c
√
T (Û−U)

−
√

1

T
(Û−U)UTω∗u

−
√

1

T
U(Û−U)Tω∗u

−
√

1

T
(Û−U)(Û−U)Tω∗u

+

√
1

T
U(ru,c1−UTω∗u)

=:I + II + III + IV + V + V I.

About terms I and II, under Assumptions 1–3, by Bernstein’s inequality,

P

(
‖U−α‖max >

√
logN

T

)
= O

(
1

T 2

)
,

and

P

(
|µT

f Σ−1f µf − µ̂T
f Σ̂−1f µ̂f | ≥

√
logN

T

)
= O

(
1

T 2

)
.

By the proof of Proposition 2 of Ao et al. (2019),

P

(
|θall − θ̂all| ≥

√
logN

N

)
= O

(
1

logN

)
.

Therefore

P

(
|r̂u,c − ru,c| > c

√
logN

T

)
= O

(
1

logN

)
.

By the Cauchy-Schwarz inequality,

‖Û−U‖max ≤ max
1≤i≤N

√√√√ 1

T

T∑
t=1

(
Ûit − Uit

)2
. (A.8)

We have

T∑
t=1

(Ûit − Uit)
2 =

T∑
t=1

(
(βi· − β̂i·)ft

)2 ≤ K‖β − β̂‖2max

K∑
k=1

T∑
t=1

f2t,k,

where ft,k = (ft)k, β̂i· and βi· are the ith row of β̂ and β, respectively. Note that
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β − β̂ =
∑T

t=1 Utf̌
T
t (F̌T F̌)−1, where F̌ = (f̌t,k)1≤t≤T,1≤k≤K , f̌t = (ft,k − f̄k)1≤k≤K , and

f̄k =
∑T

t=1 ft,k/T . By Assumption 2, for some constant C > 0,

P

(
K∑
k=1

T∑
t=1

f2t,k < CT

)
> 1− 1

T
.

By the independence between U and F̌ and Bernstein’s inequality, one can show that

P

(
‖β − β̂‖max >

√
logN

T

)
<

1

T 2
.

Therefore,

P

(
max
1≤i≤N

1

T

T∑
t=1

(Ûit − Uit)
2 >

logN

T

)
= O

(
1

T 2

)
. (A.9)

By (A.8) and (A.9), we get

P

(
‖Û−U‖max >

√
logN

T

)
= O

(
1

T 2

)
.

Combining the results above yields

P
(
‖I‖max >

√
logN

)
= O

(
1

logN

)
,

and

P
(
‖II‖max >

√
logN

)
= O

(
1

T 2

)
.

About term III, by the Cauchy-Schwarz inequality,

‖(Û−U)UTω∗‖max ≤

(
max
1≤i≤N

√√√√ T∑
t=1

(
Ûit − Uit

)2)√√√√ T∑
t=1

(
(ω∗u)TUt

)2
.

Note that (ω∗u)TUt
i.i.d.∼ N(

√
θu, 1), we get that for some C > 0,

P

(( T∑
t=1

(
(ω∗u)TUt

)2)
< CT

)
> 1− 1

T 2
. (A.10)

Combining (A.9) and (A.10) yields

P
(
‖III‖max >

√
logN

)
= O

(
1

T 2

)
.
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About term IV , by the Cauchy-Schwarz inequality, we get that

‖IV ‖max ≤

√√√√ max
1≤i≤N

1

T

T∑
t=1

U2
it

√√√√ T∑
t=1

(
(ω∗u)T (Ût −Ut)

)2
. (A.11)

Under Assumptions 2 and 3, there exists C > 0,

P

(
max
1≤i≤N

1

T

T∑
t=1

(Uit)
2 < C

)
≥ 1− 1

T 2
. (A.12)

Note that Ût −Ut = (β − β̂)ft =
(∑T

t=1 Utf̌
T
t (F̌T F̌)−1

)
ft. We have that

(ω∗u)T (Ût −Ut) =

(
T∑
t=1

(ω∗u)TUtf̌
T
t (F̌T F̌)−1

)
ft.

Therefore,

T∑
t=1

(
(ω∗u)T (Ût −Ut)

)2
≤

∥∥∥∥∥
T∑
t=1

(ω∗u)TUtf̌
T
t (F̌T F̌)−1

∥∥∥∥∥
2( T∑

t=1

‖ft‖2
)

≤

∥∥∥∥∥
T∑
t=1

(ω∗u)TUtf̌
T
t

∥∥∥∥∥
2

·
∥∥∥(F̌T F̌)−1

∥∥∥2( T∑
t=1

‖ft‖2
)
.

Because (ω∗u)TUt ∼ N(
√
θu, 1), and independent with ft, we have

P

(∥∥∥∥∥
T∑
t=1

(ω∗u)TUtf̌
T
t

∥∥∥∥∥ >√(logN)T

)
= O

(
1

T 2

)
.

Moreover, because ft
i.i.d.∼ N(µf ,Σf ), we have

P

(
T∑
t=1

‖ft‖2 < cT

)
> 1− 1

T 2
.

and

P

(∥∥∥(F̌T F̌)−1
∥∥∥ < c

T

)
> 1− 1

T 2
.

It follows that

P

(
T∑
t=1

(
(ω∗u)T (Ût −Ut)

)2
> C logN

)
= O

(
1

T 2

)
. (A.13)
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Combining (A.11), (A.12) and (A.13) yields

P
(
IV >

√
logN

)
= O

(
1

T 2

)
.

About term V , we have

‖(Û−U)(Û−U)Tω∗u‖max

≤

√√√√ max
1≤i≤N

(
T∑
t=1

(Ûit − Uit)2

)√√√√ T∑
t=1

(
(ω∗u)T (Ût −Ut)

)2
.

By (A.9) and (A.13), we then get

P

(
‖V ‖max >

logN√
T

)
= O

(
1

T 2

)
.

Finally, about term V I, we have

‖V I‖max =

√
1

T

(
max
1≤i≤N

∣∣∣∣∣
T∑
t=1

Uit(ru,c −UT
t ω
∗
u)

∣∣∣∣∣
)
.

Note that

E
(
Ut(ru,c −UT

t ω
∗
u)
)

=
1√
θu
α+α

√
θu −

(
ααT + Σu

)
1√
θu

Σ−1u α

=
1√
θu
α+α

√
θu −

1√
θu
α−α

√
θu

= 0.

In addition, under Assumption 3, for some constant C > 0,

max
1≤i≤N

E

((
Uit(ru,c −UT

t ω
∗
u)
)2)

≤ max
1≤i≤N

√
E
(
U4
it

)√
E
(

(ru,c −UT
t ω
∗
u)4
)
< C.

Hence, under Assumption 2, by Bernstein’s inequality, we get

P
(
‖V I‖max ≥

√
logN

)
= O

(
1

T 2

)
.

Combining the results above yields

P
(
‖(W T

1 ,W
T
2 )‖max > C

√
logN

)
= O

( 1

logN

)
→ 0.
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Next, we have

C11 =
1

T
(ÛS1 −US1)(ÛS1 −US1)

T

+
1

T
(ÛS1 −US1)U

T
S1
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1

T
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US1U

T
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(ÛSc
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−USc
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)(ÛS1 −US1)

T

+
1

T
(ÛSc
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1
)UT
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1
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T
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1
UT
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.

By Assumptions 1–3 and (A.9), with probability tending one,∥∥∥∥∥ 1

T
(Û−U)(Û−U)T

∥∥∥∥∥
max

< C
logN

T
.

By Assumptions 2 and Bernstein’s inequality,∥∥∥∥∥ 1

T
UUT −Σu −ααT

∥∥∥∥∥
max

< C

√
logN

T
,

and ∥∥∥∥∥ 1
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(Û−U)UT
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<

√∥∥∥ 1
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(Û−U)(Û−U)T
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T
UUT
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<C

√
logN

T
.

Similarly, ∥∥∥∥∥ 1

T
U(Û−U)T
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max

< C

√
logN

T
.

We then get

‖C11 −Σu,11 −α1α
T
1 ‖max < C

√
logN

T
,

and

‖C21 −Σu,21 −α2α
T
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√
logN

T
.
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The desired result (A.2) follows.

A.2 Proof of Theorem 2

To show Theorem 2, by Theorem 1 and Slusky’s Theorem, it suffices to work under the
event {Ŝfull,1 = Sfull,1} below. We have

Σ̂−1full,1µ̂full,1 −Σ−1full,1µfull,1

=(Σ̂−1full,1 −Σ−1full,1)(µ̂full,1 − µfull,1)

+ Σ−1full,1(µ̂full,1 − µfull,1)

+ Σ
−1/2
full,1(Σ

1/2
full,1Σ̂

−1
full,1Σ

1/2
full,1 − I)(I−Σ

−1/2
full,1Σ̂full,1Σ

−1/2
full,1)Σ

−1/2
full,1µfull,1

+ (Σ−1full,1 −Σ−1full,1Σ̂full,1Σ
−1
full,1)µfull,1

=:I + II + III + IV.

(A.14)

Assumption 3 implies that ‖µfull,1‖max = O(1), and ‖ diag(Σfull,1)‖max = O(1). By
Bernstein’s inequality, we have

‖µ̂full,1 − µfull,1‖ = Op

(√
qu(log qu)

T

)
. (A.15)

Note that under Assumption 2, TΣ
−1/2
full,1Σ̂full,1Σ

−1/2
full,1 follows Wishart distribution with df

T − 1 and covariance matrix I, and can be written as

TΣ
−1/2
full,1Σ̂full,1Σ

−1/2
full,1 =

T−1∑
t=1

ztz
T
t , (A.16)

where zt are i.i.d. multivariate standard normal. By Theorem 2 of El Karoui (2003), we
have

‖Σ−1/2full,1Σ̂full,1Σ
−1/2
full,1 − I‖ = Op

(√
qu
T

)
. (A.17)

By Assumption 4 that q2u(logN) = o(N), we get that, with probability tending one, for
all large N and T , Σ̂−1full,1 exists, ‖Σ̂−1full,1‖ = Op(1), and

‖Σ1/2
full,1Σ̂

−1
full,1Σ

1/2
full,1 − I‖ = Op

(√
qu
T

)
= op(1). (A.18)
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In addition, because Σ̂−1full,1−Σ−1full,1 = Σ
−1/2
full,1(Σ

1/2
full,1Σ̂

−1
full,1Σ

1/2
full,1− I)Σ

−1/2
full,1, we get that

‖Σ̂−1full,1 −Σ−1full,1‖ = Op

(√
qu
T

)
. (A.19)

It follows that

‖I‖ = Op

(
qu
√

(log qu)

T

)
= op

(
1√
T

)
, (A.20)

where the last equality holds by the assumptions that q2u(logN) = o(N) and N � T ,
which imply that q2u(log qu) = o(T ).

About term II, by Assumption 2, we have

II ∼ N

(
0,

1

T
Σ−1full,1

)
. (A.21)

About term III, we have
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Note that
µT
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Hence by Assumption 3,

‖Σ−1/2full,1µfull,1‖ =
√
µT
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−1
full,1µfull,1 = O(1). (A.22)

By Assumption 6, (A.17) and (A.18), we then get

‖III‖ =Op

(
qu(log qu)

T

)
= op

(
1√
T

)
. (A.23)

About term IV , by (A.16), we have

IV = Σ
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1

T

T−1∑
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(I− ztz
T
t )Σ

−1/2
full,1µfull,1 +

1

T
Σ−1full,1µfull,1. (A.24)

By Assumptions 3 and 6, we have ‖Σ−1full,1‖ = O(1), and ‖µfull,1‖ = O(
√
qu). Therefore,

1

T
‖Σ−1full,1µfull,1‖ = O

(
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(√
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For any non-random matrix A,

E
(
AΣ

−1/2
full,1(I− ztz

T
t )Σ

−1/2
full,1µfull,1

)
= 0. (A.26)

In addition, for any non-random (qu + K) × (qu + K) matrices B1 and B2 (that are no
need to be symmetric or positive definite),

E(zT
t B1ztz

T
t B2zt) = tr(B1) tr(B2) + tr(B1B2) + tr(B1B

T
2 ). (A.27)

By (A.27), we get that
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(A.28)

where ei is a length-k vector with the ith element being one and zero elsewhere. By (A.26)
and (A.28), we have
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(A.29)

In addition, by the Cauchy-Schwarz inequality,

E
(
‖AΣ

−1/2
full,1ztz

T
t Σ
−1/2
full,1µfull,1‖4

)
=E
(

(zT
t Σ
−1/2
full,1A

TAΣ
−1/2
full,1zt)

2(zT
t Σ
−1/2
full,1µfull,1µ

T
full,1Σ

−1/2
full,1z

T
t )2
)

≤
√
E
(

(zT
t Σ
−1/2
full,1A

TAΣ
−1/2
full,1zt)4

)√
E
(

(zT
t Σ
−1/2
full,1µfull,1µT

full,1Σ
−1/2
full,1z

T
t )4
)
.

By Lemma 2.9 of Bai and Silverstein (1998),
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where the last equality holds by Assumption 6 and that ‖A‖ = O(1). Similarly,
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where the last equality holds by (A.22). It follows that

E
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‖AΣ
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t Σ
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full,1µfull,1‖4

)
= O(1). (A.30)

By the Lyapunov Central Limit Theorem,

A(IV )
L→ N(0,ΣA,IV ),

where ΣA,IV = limN→∞(µT
full,1Σ

−1
full,1µfull,1)AΣ−1full,1A

T + AΣ−1full,1µfull,1µ
T
full,1Σ
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full,1A

T .
Using further the independence between µ̂full,1 and Σ̂full,1, and (A.21), we obtain

A(II + IV )
L→ N(0,ΣA). (A.31)

The desired result follows from (A.14), (A.20), (A.23) and (A.31). 2

Appendix B Asset pricing tests of MAXSER-S(10)

In this section, we report the asset pricing tests of the MAXSER-S(10) SDF. First, similar
to the test results reported in Table 2, we examine the pricing power of the MAXSER-
S(10) SDF in explaining the returns of 188 anomaly portfolios. The results are reported
in Table B.1. We see that there are totally 13 (2) anomalies with significant alphas for a
threshold t = 1.96 (t = 3). Comparing with the performance of the MAXSER-S(20) SDF
reported in Table 2, we see that MAXSER-S(20) has fewer rejections.

Table B.1: The number of significant alphas from testing 188 anomalies against

MAXSER-S(10). We examine the explanatory power of the MAXSER-S(10) SDF over
188 anomalies. This table summarizes the total number of significant alphas and the
number of significant alphas in each characteristic group. The number in parenthesis is
the total number of portfolios in each anomaly group. The number of significant alphas
under the threshold t > 1.96 or t > 3 is reported. The evaluation period is between 2000
and 2021.

All (188) frictions (10) intangibles (30) investment (29)
threshold of t 1.96 3 1.96 3 1.96 3 1.96 3

MAXSER-S(10) 13 2 0 0 4 1 3 1
momentum (41) profitability (46) value-growth (32)

threshold of t 1.96 3 1.96 3 1.96 3
MAXSER-S(10) 0 0 6 0 0 0
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Next, similar to the test results reported in Table 3 based on the MAXSER-S(20)
SDF, we evaluate the explanatory power of the benchmark models over the SDF portfolio
constructed from MAXSER-S(10). Table B.2 reports the alpha and its t-statistic from
the regressions.

Table B.2: Testing the MAXSER-S(10) SDF against benchmark models. This
table reports the regression results of the SDF portfolio from MAXSER-S(10) against
several benchmark models, using monthly returns from 2000 to 2021. Alpha in percentage
and its corresponding t-statistic are reported.

Alpha (%) t-statistic
CAPM 2.17 6.27
FF3 2.07 6.31
FF5 1.49 4.57
FF6 1.45 4.52
Q4 1.44 4.67
Q5 1.18 3.71
BS6 1.43 4.66
SY4 1.33 3.56
DHS3 1.40 4.32
KNS 1.28 4.53

Table B.2 shows that the alpha of MAXSER-S(10) is both economically large and
statistically significant under all benchmark models. However, comparing with the re-
sults in Table 3, we see that the alphas of MAXSER-S(10) are all smaller than those of
MAXSER-S(20).

Finally, similar to the results reported in Table 4 for the MAXSER-S(20) SDF, we
switch the roles between benchmark models and MAXSER-S(10), and check whether
MAXSER-S(10) is able to explain the prevailing pricing factors. Table B.3 reports the
alpha and its t-statistic from regressions.
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Table B.3: Testing prevailing pricing factors with the MAXSER-S(10) SDF. This
table reports the regression results of various pricing factors against the MAXSER-S(10)
SDF, using monthly returns from 2000 to 2021. Alpha in percentage and its corresponding
t-statistic are reported.

Factor Alpha (%) t-statistic
Mkt-RF 0.53 1.77
SMB 0.17 0.84
HML -0.28 -1.38
RMW 0.10 0.53
CMA 0.06 0.47
MOM -0.06 -0.19
R_ME 0.17 0.81
R_IA -0.09 -0.66

R_ROE -0.01 -0.04
R_EG 0.32 1.98
HmLm 0.05 0.16
MGMT 0.06 0.29
PERF 0.32 0.86
PEAD 0.25 1.73
FIN -0.15 0.53
KNS 0.17 0.64

We see from Table B.3 that most alphas are insignificant at the t-statistic of 1.96. The
t-statistic of the expected investment growth factor (R_EG) from the Q5 model is 1.98.
Comparing with the results from Table 4, we see that MAXSER-S(20) can better capture
the prevailing pricing factors than MAXSER-S(10).
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